精英家教网 > 初中数学 > 题目详情

如下图,在△ABC中,AD⊥BC于D,若AB2=BD·BC,
求证:△ABC是直角三角形。

三角形相似和角度变换

解析试题分析:证明:∵AD⊥BC于D,∴∠ADB=90° (2分)
∵AB2=BD·BC,∴ (4分)
又∵∠B=∠B,∴△ABC∽△DBA (8分)
∴∠CAB=∠ADB=90°
∴△ABC为直角三角形
考点: 相似三角形的判定
点评:解答本题的的关键是熟练掌握有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如下图,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,若AD=2cm,则CD=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N.则△BCM的周长为
14

查看答案和解析>>

科目:初中数学 来源: 题型:

18、已知如下图,在△ABC中,AB=AC,AD⊥BC,垂足为D,则图中相等的线段还有
BD=CD
,相等的角还有
∠BAD=∠CAD
∠B=∠C
,要证明这些线段和角相等,只需要证明
△ABD≌△ACD

查看答案和解析>>

科目:初中数学 来源: 题型:

如下图,在△ABC中,∠C=30°,∠ABC=90°,AC∥BD,则∠ABD=
120°
120°

查看答案和解析>>

同步练习册答案