13£®×ÐϸÔĶÁÏÂÃæÀýÌ⣬½â´ðÎÊÌ⣺
ÀýÌ⣺ÒÑÖª¶þ´ÎÈýÏîʽx2-4x+mÓÐÒ»¸öÒòʽÊÇ£¨x+3£©£¬ÇóÁíÒ»¸öÒòʽÒÔ¼°mµÄÖµ£®
½â£ºÉèÁíÒ»¸öÒòʽΪ£¨x+n£©£¬µÃx2-4x+m=£¨x+3£©£¨x+n£©£¬Ôòx2-4x+m=x2+£¨n+3£©x+3n
¡à$\left\{\begin{array}{l}{n+3=-4}\\{m=3n}\end{array}\right.$
½âµÃ£ºn=-7£¬m=-21¡àÁíÒ»¸öÒòʽΪ£¨x-7£©£¬mµÄֵΪ-21£®
ÎÊÌ⣺·ÂÕÕÒÔÉÏ·½·¨½â´ðÏÂÃæÎÊÌ⣺
£¨1£©ÒÑÖª¶þ´ÎÈýÏîʽ2x2+3x-kÓÐÒ»¸öÒòʽÊÇ£¨2x-5£©£¬ÇóÁíÒ»¸öÒòʽÒÔ¼°kµÄÖµ£®
£¨2£©ÒÑÖª¶þ´ÎÈýÏîʽ6x2+4ax+2ÓÐÒ»¸öÒòʽÊÇ£¨2x+a£©£¬aÊÇÕýÕûÊý£¬ÇóÁíÒ»¸öÒòʽÒÔ¼°aµÄÖµ£®
£¨3£©Èç¹ûx4-x3+mx2-2mx-2ÄÜ·Ö½â³ÉÁ½¸öÕûÊýϵÊýµÄ¶þ´ÎÒòʽµÄ»ý£¬ÊÔÇómµÄÖµ£¬²¢°ÑÕâ¸ö¶àÏîʽ·Ö½âÒòʽ£®

·ÖÎö £¨1£©ÉèÁíÒ»¸öÒòʽÊÇ£¨x+b£©£¬Ôò£¨2x-5£©£¨x+b£©=2x2+2bx-5x-5b=2x2+£¨2b-5£©x-5b=2x2+3x-k£¬¸ù¾Ý¶ÔÓ¦ÏîµÄϵÊýÏàµÈ¼´¿ÉÇóµÃbºÍkµÄÖµ£»
£¨2£©ÉèÁíÒ»¸öÒòʽÊÇ£¨3x+m£©£¬ÀûÓöàÏîʽµÄ³Ë·¨ÔËËã·¨ÔòÕ¹¿ª£¬È»ºó¸ù¾Ý¶ÔÓ¦ÏîµÄϵÊýÏàµÈÁÐʽÇó³öm¡¢aµÄÖµ£¬È»ºó´úÈë´úÊýʽ½øÐмÆËã¼´¿ÉµÃ½â£»
£¨3£©ÓÉÓÚ£¨x2£©2-x3+mx2-2mx-2ÄÜ·Ö½â³ÉÁ½¸öÕûÊýϵÊýµÄ¶þ´ÎÒòʽµÄ»ý£¬¿ÉÉ裨x2£©2-x3+mx2-2mx-2=£¨x2+ax-1£©£¨x2+bx+2£©»ò£¨x2+ax+1£©£¨x2+bx-2£©£®Õ¹¿ªÀûÓöÔÓ¦ÏîµÄϵÊýÏàµÈ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèÁíÒ»¸öÒòʽÊÇ£¨x+b£©£¬Ôò
£¨2x-5£©£¨x+b£©=2x2+2bx-5x-5b=2x2+£¨2b-5£©x-5b=2x2+3x-k£¬
Ôò$\left\{\begin{array}{l}{2b-5=3}\\{-5b=-k}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=4}\\{k=20}\end{array}\right.$£®
ÔòÁíÒ»¸öÒòʽÊÇ£ºx+4£¬k=20£®

£¨2£©ÉèÁíÒ»¸öÒòʽÊÇ£¨3x+m£©£¬Ôò
£¨2x+a£©£¨3x+m£©=6x2+£¨2m+3a£©x+am=6x2+4ax+2£¬
Ôò$\left\{\begin{array}{l}{2m+3a=4a}\\{am=2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=2}\\{m=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=-2}\\{m=-1}\end{array}\right.$£¬
ÁíÒ»¸öÒòʽÊÇ3x-1£¬aµÄÖµÊÇ-2£¨²»ºÏÌâÒâÉáÈ¥£©£¬
¹ÊÁíÒ»¸öÒòʽÊÇ3x+1£¬aµÄÖµÊÇ2£®

£¨3£©¡ß£¨x2£©2-x3+mx2-2mx-2ÄÜ·Ö½â³ÉÁ½¸öÕûÊýϵÊýµÄ¶þ´ÎÒòʽµÄ»ý£¬
¡à¿ÉÉ裨x2£©2-x3+mx2-2mx-2=£¨x2+ax-1£©£¨x2+bx+2£©»ò£¨x2+ax+1£©£¨x2+bx-2£©£®
¢Ù£¨x2+ax-1£©£¨x2+bx+2£©=x4+£¨a+b£©x3+£¨1+ab£©x2+£¨2a-b£©x-2£¬
¡à$\left\{\begin{array}{l}{a+b=-1}\\{1+ab=m}\\{2a-b=-2m}\end{array}\right.$£¬
½âµÃm=1»ò-$\frac{7}{4}$£®
¢Ú£¨x2+ax+1£©£¨x2+bx-2£©=x4+£¨a+b£©x3+£¨ab-1£©x2+£¨b-2a£©x-2£¬
¡à$\left\{\begin{array}{l}{a+b=-1}\\{ab-1=m}\\{b-2a=-2m}\end{array}\right.$£¬
½âµÃm=-1»ò-$\frac{7}{4}$£®
×ÛÉϿɵãºmµÄֵΪ1»ò$\frac{7}{4}$»ò-1»ò-$\frac{7}{4}$£®

µãÆÀ ±¾Ì⿼²éÁËÒòʽ·Ö½âµÄÒâÒ壬ÕýÈ·Àí½âÒòʽ·Ö½âÓëÕûʽµÄ³Ë·¨»¥ÎªÄæÔËËãÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª2x-4y=x+4y=9£¬Çóx£¬yµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®µÈÑüÈý½ÇÐÎÖܳ¤Îª15ÀåÃ×£¬Ò»ÑüÉÏÖÐÏß°ÑÆäÖܳ¤·ÖΪÁ½²¿·ÖÖ®²îΪ3ÀåÃ×£¬ÔòÑü³¤Îª6ÀåÃ×»ò4ÀåÃ×£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺a2$\sqrt{b}$-$\sqrt{{a}^{2}b}$+a$\sqrt{{b}^{2}}$-$\sqrt{\frac{{a}^{2}}{b}}$£¨a¡Ý0£¬b£¾0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªx¡¢yΪÁ½¸öÁ¬ÐøÕûÊý£¬ÇÒx£¼$\sqrt{28}$£¼y£¬Ôò$\sqrt{\frac{x}{y}}$=$\frac{\sqrt{30}}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª£¬Èçͼ£¬CΪÏ߶ÎABÉϳý¶ËµãÍâµÄÈÎÒâÒ»µã£¬AD¡ÎBE£¬ÇÒ¡ÏD=¡Ï1£¬¡ÏE=¡Ï2£®Çó¡ÏDCEµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Éèa£¬bΪ·ÇÁãʵÊý£¬Ôò$\frac{a}{|a|}$+$\frac{\sqrt{{b}^{2}}}{b}$¿ÉÄܵÄֵΪ2»ò-2»ò0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Õý±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄͼÏóµÄ½»µãAµÄ×ø±êΪ£¨4£¬3£©£¬µãB£¨0£¬-3£©ÎªÒ»´Îº¯ÊýµÄͼÏóÓëyÖáµÄ½»µã£®
£¨1£©ÇóÕâÁ½¸öº¯ÊýµÄ½âÎöʽ£»
£¨2£©Çó¡÷AOBµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÕûÊýxÂú×ã²»µÈʽ3x-4¡Ü6x-2ºÍ²»µÈʽ$\frac{2x+1}{3}$-1£¼$\frac{x-1}{2}$£¬ÇÒÂú×ã·½³Ì3£¨x+a£©-5a+2=0£¬Çó´úÊýʽ5a2012+$\frac{1}{a}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸