精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC内接于O,AB是O的直径.PC是O的切线,C为切点,PDAB于点D,交AC于点E.

(1)求证:∠PCE=∠PEC;

(2)若AB=10,ED=,sinA=,求PC的长.

【答案】(1)见解析;(2)PC=

【解析】

(1)由弦切角定理可知∠PCA=∠B,由直角所对的圆周角等于90°可知∠ACB=90°.由同角的余角相等可知∠AED=∠B,结合对顶角的性质可知∠PCE=∠PEC

(2)过点PPFAC,垂足为F.由锐角三角函数的定义和勾股定理可求得AC=8,AE,由等腰三角形三线合一的性质可知EF,然后证明△AED∽△PEF,由相似三角形的性质可求得PE的长,从而得到PC的长.

(1)∵PC是圆O的切线,

∴∠PCA=∠B.

∵AB是圆O的直径,

∴∠ACB=90°.

∴∠A+∠B=90°.

∵PD⊥AB,

∴∠A+∠AED=90°.

∴∠AED=∠B.

∵∠PEC=∠AED,

∴∠PCE=∠PEC.

(2)如图所示,过点P作PF⊥AC,垂足为F.

∵AB=10,sinA=

∴BC=AB=6.

∴AC==8.

∵DE=,sinA=

∴AE=

∴EC=AC﹣AE=8﹣

∵PC=PE,PF⊥EC,

∴EF=

∵∠AED=∠PEF,∠EDA=∠EFP,

∴△AED∽△PEF.

解得:EP=

∴PC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y=﹣x2,当水位上涨1m时,水面宽CD2m,则桥下的水面宽AB_____m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图均匀的正四面体的各面依次标有1,2,3,4四个数

(1)同时抛掷两个这样的四面体它们着地一面的数字相同的概率是多少?

(2)现在有一张周杰伦演唱会的门票小敏和小亮用抛掷这两个四面体的方式来决定谁获得门票规则是同时抛掷这两个四面体如果着地一面的数字之积为奇数小敏胜如果着地一面的数字之积为偶数小亮胜(胜方获得门票),如果是你你愿意充当小敏还是小亮说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度hm)与它的飞行时间ts)满足二次函数关系,th的几组对应值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之间的函数关系式(不要求写t的取值范围);

(2)求小球飞行3s时的高度;

(3)问:小球的飞行高度能否达到22m?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的半径为3,A,P两点在O上,点B在O内,tan∠APB=,AB⊥AP.如果OBOP,那么OB的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的解析式是y=x2﹣2x﹣3.

(1)与y轴的交点坐标是   ,顶点坐标是   

(2)在坐标系中利用描点法画出此抛物线;

x

y

(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,BA=BC,∠ABC=α(0°<α<180°),点P为直线BC上一动点(不与点B,C重合),连接AP,将线段PA绕点P顺时针旋转α度得到线段PQ,连接CQ.

(1)当α=90°,且点P在线段BC上时,过P作PF∥AC交直线AB于点F,如图1,图中与△APF全等的是哪个三角形,∠ACQ的度数

(2)当点P在BC延长线上,AB:AC=m:n时,如图2,试求线段BP与CQ的比值;

(3)当点P在直线BC上,α=60°,∠APB=30°,CP=4时,请直接写出线段CQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;

(2)分别计算甲、乙六次测试成绩的方差;

(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.

计算方差的公式:s2 [(x1)2+(x2)2++(xn)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AC与BD相交于点O.若 AO=3,∠OBC=30°,求矩形的周长和面积.

查看答案和解析>>

同步练习册答案