精英家教网 > 初中数学 > 题目详情
(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是
AC=DF
AC=DF
.(只需写一个,不添加辅助线)
分析:求出BC=EF,∠ACB=∠DFE,根据SAS推出两三角形全等即可.
解答:解:AC=DF,
理由是:∵BF=CE,
∴BF+FC=CE+FC,
∴BC=EF,
∵AC∥DF,
∴∠ACB=∠DFE,
在△ABC和△DEF中
AC=DF
∠ACB=∠DFE
BC=EF

∴△ABC≌△DEF(SAS),
故答案为:AC=DF.
点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)如图,在△ABC中,AB=AC,BC=8,tanC=
3
2
,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为
15
4
15
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.
(1)求证:DE=EF;
(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

查看答案和解析>>

同步练习册答案