精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC内接于⊙O1,AB=AC.⊙O2与BC相切于点B,与AB相交于精英家教网点E,与⊙O1相交于点D,直线AD交⊙O2于点F,交CB的延长线于点G.求证:
(1)EF∥CG;
(2)AB•EB=DE•AG.
分析:(1)根据同弧所对的圆周角相等,可得∠FEB=∠FDB,∠FDB=∠C,则∠FEB=∠C,由等边对等角得,∠ABC=∠C,则∠FEB=∠ABC,由平行线的判定得EF∥CG;
(2)连接BF.可证△ADE∽△ABF,得
DE
BF
=
AE
AF
,再由EF∥CG,得
AB
AG
=
AE
AF
,从而可得
DE
BF
=
AB
AG
,再证BE=BF,得AB•BE=DE•AG.
解答:精英家教网(1)证法一:连接BD.∵∠FEB=∠FDB,∠FDB=∠C.∴∠FEB=∠C.
又∵AB=AC,∴∠ABC=∠C,∴∠FEB=∠ABC,∴EF∥CG.
证法二:
也可证出∠AGB=∠EFD(同位角),得出EF∥CG.

(2)证法一:
∵EF∥CG,∴∠DFE=∠G.又∵∠DBE=∠DFE,∴∠DBE=∠G,
即∠DBE=∠CGA.∵∠ABC=∠C,∠ABC=∠BDE,∴∠BDE=∠C,
即∠BDE=∠GCA.∴△BDE∽△GCA.
EB
AG
=
DE
CA

∵AB=AC,
∴AB•EB=DE•AG.
证法二:连接BF.
可证△ADE∽△ABF,得
DE
BF
=
AE
AF

由EF∥CG,得
AB
AG
=
AE
AF
,从而可得
DE
BF
=
AB
AG

再证BE=BF,得AB•BE=DE•AG.
点评:本题综合考查了切线的性质,相似三角形,解直角三角形等知识点的运用.此题是一个大综合题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案