精英家教网 > 初中数学 > 题目详情
如图所示,AB是⊙O的直径,弦BC=2cm,∠ABC=60º.

(1)求⊙O的直径;
(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从点A出发沿着AB方向运动,同时动点F以1cm/s的速度从点B出发沿BC方向运动,设运动时间为t(s)(0<t<2),连结EF,当t为何值时,△BEF为直角三角形.
(1)4cm;(2)2cm;(3)t=1s或t=1.6s时

试题分析:(1)先根据圆周角定理可得∠ACB=90º,再由∠ABC=60º可得∠BAC=30º,再根据含30°角的直角三角形的性质即可求得结果;
(2)连结OC,根据切线的性质可得∠OCD=90º,根据圆周角定理可得∠COD=60º,从而可得∠D=30º ,再根据含30°角的直角三角形的性质即可求得结果;
(3)根据题意得BE=(4-2t)cm,BF=tcm,分∠EFB=90º与∠FEB=90º两种情况结合相似三角形的性质即可求得结果.
(1)∵AB是⊙O的直径
∴∠ACB=90º
∵∠ABC=60º
∴∠BAC=180º-∠ACB-∠ABC=30º
∴AB=2BC=4cm,即⊙O的直径为4cm;
(2)如图,连结OC.

∵CD切⊙O于点C,
∴CD⊥CO
∴∠OCD=90º
∵∠BAC=30º
∴∠COD=2∠BAC=60º.
∴∠D=180º-∠COD-∠OCD=30º
∴OD=2OC=4cm
∴BD=OD-OB=4-2=2cm
∴当BD长为2cm时,CD与⊙O相切;
(3)根据题意,得BE=(4-2t)cm,BF=tcm;

如图,当∠EFB=90º时,△BEF为直角三角形,
∵∠EFB=∠ACB,∠B=∠B
∴△BEF∽△BAC
,即,解得t=1.

如图,当∠FEB=90º时,△BEF为直角三角形,
∵∠FEB=∠ACB,∠B=∠B,
∴△BEF∽△BCA.
,即,解得t=1.6.
∴当t=1s或t=1.6s时,△BEF为直角三角形.
点评:本题知识点多,综合性强,难度较大,一般是中考压轴题,主要考查学生对圆的性质的熟练掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O
切线,交OD的延长线于点E,连结BE.

(1)求证:BE与⊙O相切;
(2)连结AD并延长交BE于点F,若OB=6,且sin∠ABC=,求BF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙半径为3cm,⊙的半径为7 cm,若⊙和⊙的公共点不超过1个,则两圆的圆心距不可能为(    ).
A.0 cmB.4 cm C.8 cmD.12 cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.

(1)求证:AD⊥CD;
(2)若AD=2,AC=,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,O1O2=7,⊙O1和⊙O2的半径分别为2和3,O1O2交⊙O2于点P.若将⊙O 1以每秒60°的速度绕点P顺时针方向旋转一周,则⊙O1与⊙O2最后一次相切时的旋转时间为_____________秒

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若半径分别为4、6的两个圆的圆心距等于5,则两圆的位置关系为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,
∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为(  )
A.45°B.40°C.50°D.65°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。请你帮他计算这块圆形铁皮的半径为(  )
A.2cm;B.3cm;C.6cm;D.12cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分14分,其中第(1)题4分,第(2)题的第?、?小题分别为4分、6分)
如图1,在△ABC中,已知AB=15,cosB=tanC=.点D为边BC上的动点(点D不与B、C重合),以D为圆心,BD为半径的⊙D交边AB于点E

(1)设BD=xAE=y,求的函数关系式,并写出函数定域义;
(2)如图2,点F为边AC上的动点,且满足BD=CF,联结DF
①当△ABC和△FDC相似时,求⊙D的半径;
② 当⊙D与以点F为圆心,FC为半径⊙F外切时,求⊙D的半径.

查看答案和解析>>

同步练习册答案