精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,直线与双曲线相交于点Am,3),B(-6,n),与x轴交于点C

(1)求直线的解析式;

(2)若点Px轴上,且,求点P的坐 标(直接写出结果).

【答案】(1);(2)(-2,0)或(-6,0)

【解析】试题分析:(1)把AB分别代入求出mn的值,即可得AB两点坐标,代入直线解析式即可求解;

2P点坐标为(x0),根据即可求出点P的坐标.

试题解析:1)由题意可求:m=2n=-1

将(23),B(-6-1)带入,得

解得

直线的解析式为.

2设点Px0),

y=0,得x=4

C-40

PC=|x+4|BC=4

解得:x1=-2x2=-6

P-2,0)或P-6,0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A、O、E在同一直线上,∠AOB=40°,∠COD=28°,OD平分∠COE.

(1)求∠COB的度数;
(2)求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.

(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是
(2)表中a= , b= , 并请补全频数分布直方图;
(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在平面直角坐标系中的位置如图所示.

(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出△A1B1C1各顶点坐标;
(2)将△ABC向左平移1个单位,作出平移后的△A2B2C2 , 并写出△A2B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图题:如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△AOB的三个顶点A,O,B都在格点上.

(1)画出△AOB关于点O成中心对称的三角形;
(2)画出△AOB绕点O逆时针旋转90后得到的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90度.

(1)请你数一数,图中有多少个角;
(2)求出∠BOD的度数;
(3)请通过计算说明OE是否平分∠BOC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
(1)把下面的频数分布表和频数分布直方图补充完整;

月均用水量x(t)

频数(户)

频率

0<x≤5

6

0.12

5<x≤10

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

25<x≤30

2

0.04



(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F在OD上一点,且∠1=∠A.
(1)求证:FE∥OC;
(2)若∠DFE=70°,求∠BOC的度数.

查看答案和解析>>

同步练习册答案