精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A80),O为坐标原点,P是线段OA上任意一点(不含端点OA),过PO两点的二次函数y1和过PA两点的二次函数y2的图象开口均向下,它们的顶点分别为BC,射线OBAC相交于点D.当OD=AD=5时,这两个二次函数的最大值之和等于_______

【答案】3

【解析】

BBFOAF,过DDEOAE,过CCMOAM,则BF+CM是这两个二次函数的最大值之和,BFDECM,求出AE=OE=6DE=3.设P2x0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出,代入求出BFCM,相加即可求出答案.

BBFOAF,过DDEOAE,过CCMOAM

BFOADEOACMOA

BFDECM

OD=AD=5DEOA

OE=EA=OA=4

由勾股定理得:DE==3

P2x0),根据二次函数的对称性得出OF=PF=x

BFDECM

∴△OBF∽△ODE,△ACM∽△ADE

AM=PM=OA-OP=8-2x=4-x

解得:BF=xCM=3-x

BF+CM=3

故答案为3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点的坐标为,动点从点出发,沿轴以每秒个单位的速度向上移动,且过点的直线也随之移动,如果点关于的对称点落在坐标轴上,没点的移动时间为,那么的值可以是___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知:正方形OCABA22),Q57),ABy轴,ACx轴,OABC交于点P,若正方形OCABO为位似中心在第一象限内放大,点P随正方形一起运动,当PQ达到最小值时停止运动.以PQ的长为边长,向PQ的右侧作等边PQD,求在这个位似变化过程中,D点运动的路径长(  )

A. 5B. 6C. 2D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,则点D到BC的距离是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线EF与⊙O相切于点C,点A为⊙O上异于点C的一动点,⊙O的半径为4ABEF于点B,设ACF=α(0°<α<180°).

1)若α=,求证:四边形OCBA为正方形;

2)若AC―AB=1,求AC的长;

3)当AC―AB取最大值时,求α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面内,我们把既有大小又有方向的量叫做平面向量。平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:(由于是相等向量,因此只算一个)

⑴作两个相邻的正方形(如图一)。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;

⑵作个相邻的正方形(如图二)“一字型”排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;

⑶作个相邻的正方形(如图三)排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;

⑷作个相邻的正方形(如图四)排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在∠MON的边ON上,ABOMBAE=OBDEONEAD=AODCOMC

1)求证:四边形ABCD是矩形;

2)若DE=3OE=9,求ABAD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD交于点OCE平分∠BCDAB于点E,交BD于点F,且∠ABC60°,AB2BC,连接OE.下列结论:ACD30°;SABCDACBCOEAC6SOEFSABCD,成立的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形的边长和一条对角线的长均为2 cm,则菱形的面积为( )

A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2

查看答案和解析>>

同步练习册答案