精英家教网 > 初中数学 > 题目详情
12.一个三角形的三边长分别为12,15,18,则它的两条内角平分线的交点把这个三角形分成的三个三角形的面积比是4:5:6.

分析 根据角平分线的性质得出角平分线的点到角的两边距离相等解答即可.

解答 解:因为角平分线的点到角的两边距离相等,
所以三个三角形的高相等,
可得三个三角形的面积比即是其边长的比,即12:15:18=4:5:6,
故答案为:4:5:6.

点评 此题考查角平分线的性质,关键是角平分线的点到角的两边距离相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=ax2+bx+2与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D.
(1)求抛物线的解析式及点D的坐标.
(2)在抛物线上是否存在点P,使△CDP的面积为$\frac{9}{2}$?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)点E是x轴上一点,在抛物线上是否存在点P,使以A,E,D,P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ABC中,∠C=90°,AC=BC,点D在AB的垂直平分线上,∠DAB=15°且AD=10cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程组:$\left\{\begin{array}{l}{4x+9y=12}\\{3y-2z=1}\\{7x+5z=\frac{19}{4}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.设二次函数f(x)=ax2+bx+c的顶点坐标是(-1,0),且对于任意实数x不等式x≤f(x)≤$\frac{1}{2}$(x2+1),则函数f(x)的表达式是f(x)=$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.a,b,c为三角形三条边,且满足ab-b2+ac-bc=0,判断三角形形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.【原题】
如图1,在△ABC中,∠BAC的平分线与∠ABC的平分线交于点O,过点O作OD⊥AB,交AB于点D(BD>AD),求证:BC-AC=BD-AD.
【尝试探究】
在图1中过点O作OE⊥BC于点E,OF⊥AC于点F,连接OC,因为∠BAC的平分线与∠ABC的平分线交于点O,所以OD=OE=OF,所以CO是∠ACB的平分线,BD=所以利用全等三角形的性质可得BD=BE,AD=AF,CE=CF,所以BC-AC=BD-AD
【类比延伸】
如图2,在四边形ABCD中,各角的平分线交于点O,试判断AB,BC,CD,AD之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在△ABC中,∠BAC=90°,AB=AC,作∠ACM,使得∠ACM=$\frac{1}{2}$∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.
(1)当点D与点B重合时,如图1所示,DF与EC的数量关系是DF=2EC;
(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:$\frac{{a}^{2}}{a-2}-\frac{4}{a-2}$=a+2.

查看答案和解析>>

同步练习册答案