精英家教网 > 初中数学 > 题目详情
已知:在菱形ABCD中,O是对角线BD上的一动点.
(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;
(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.

【答案】分析:(1)求简单的线段相等,可证线段所在的三角形全等,即证△ODQ≌△OBP.
(2)首先求AS的长,要通过构建直角三角形求解;过A作BC的垂线,设垂足为T,在Rt△ABT中,易证得∠ABT=∠DCB=60°,又已知了斜边AB的长,通过解直角三角形可求出AT、BT的长;进而可在Rt△ATS中,由勾股定理求出斜边AS的值;由于四边形ABCD是菱形,则AD∥BC,易证得△ADO∽△SBO,已知了AD、BS的长,根据相似三角形的对应边成比例线段可得出OA、OS的比例关系式,即可求出OA、OS的长;同理,可通过相似三角形△ADR和△SCR求得AR、RS的值;由OR=OS-RS即可求出OR的长.
解答:(1)证明:∵四边形ABCD为菱形,
∴AD∥BC.
∴∠OBP=∠ODQ
∵O是BD的中点,
∴OB=OD
在△BOP和△DOQ中,
∵∠OBP=∠ODQ,OB=OD,∠BOP=∠DOQ
∴△BOP≌△DOQ(ASA)
∴OP=OQ.

(2)解:如图,过A作AT⊥BC,与CB的延长线交于T.
∵ABCD是菱形,∠DCB=60°
∴AB=AD=4,∠ABT=60°
∴在Rt△ATB中,AT=ABsin60°=
TB=ABcos60°=2
∵BS=10,
∴TS=TB+BS=12,
在Rt△ATS中,
∴AS=
∵AD∥BS,
∴△AOD∽△SOB.



∵AS=
∴OS=AS=
同理可得△ARD∽△SRC.




∴OR=OS-RS=.(12分)
点评:此题考查了菱形的性质、全等三角形及相似三角形的判定和性质;(2)中能够正确的构建出直角三角形,求出AS的长是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:在菱形ABCD中,O是对角线BD上的一动点.
(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;
(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(2
3
,8

(1)画出符合题目条件的菱形与直角坐标系.
(2)写出A,B两点的坐标.
(3)设菱形ABCD的对角线的交点为P,问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在菱形ABCD中,AE⊥BC,垂足为点E,AB=13cm,对角线AC=10cm,那么AE=
120
13
120
13
cm.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年四川省成都七中嘉祥外国语学校九年级(上)月考数学试卷(10月份)(解析版) 题型:解答题

已知:在菱形ABCD中,O是对角线BD上的一动点.
(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;
(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.

查看答案和解析>>

科目:初中数学 来源:第19章《相似形》中考题集(14):19.6 相似三角形的性质(解析版) 题型:解答题

已知:在菱形ABCD中,O是对角线BD上的一动点.
(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;
(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.

查看答案和解析>>

同步练习册答案