精英家教网 > 初中数学 > 题目详情
如图,已知AB∥CD,BE∥CF,BE=CF,AE=10,EF=5,则AD的长为(  )
分析:根据平行线性质得出∠A=∠D,∠BEF=∠CFE,求出∠BEA=∠CFD,根据AAS证△AEB≌△DFC,推出AE=DF=10,即可求出答案.
解答:解:∵AB∥CD,BE∥CF,
∴∠A=∠D,∠BEF=∠CFE,
∵∠BEA+∠BEF=180°,∠CFD+∠CFE=180°,
∴∠BEA=∠CFD,
在△AEB和△DFC中,
∠AEB=∠DFC
∠A=∠D
BE=CF

∴△AEB≌△DFC(AAS),
∴AE=DF=10,
∵EF=5,
∴AD=10+5+10=25,
故选D.
点评:本题考查了平行线的性质,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知AB∥CD,∠A=38°,则∠1=
142°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠1=50°25′,则∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知 AB∥CD,∠A=53°,则∠1的度数是
127°
127°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,那么下列结论中,正确的是(  )

查看答案和解析>>

同步练习册答案