精英家教网 > 初中数学 > 题目详情
已知:如图,PA、PB是⊙O的切线;A、B是切点;连接OA、OB、OP,
(1)若∠AOP=60°,求∠OPB的度数;
(2)过O作OC、OD分别交AP、BP于C、D两点,
①若∠COP=∠DOP,求证:AC=BD;
②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由.

【答案】分析:(1)由已知可得到∠APO=30°,根据HL判定△PAO≌△PBO,从而得到∠OPB=∠OPA=30°.
(2)①由(1)知△PAO≌△PBO,得到∠POB=∠POA;再利用AAS判定△AOC≌△BOD,从而得到AC=BD;
②本题要充分利用l=2AP的条件.延长射线PA到F,使AF=BD;易证得△OAF≌△OBD(SAS),得OF=OD;
由于l=2AP,即l=PA+PB=PC+PD+CD,因此CD=AC+BD=AC+AF=CF;
在△OCF和△OCD中,OF=OD,OC=OC,FC=CD;可证得△OCF≌△OCD,那么两三角形的对应边上的高也相等,则过O作OE⊥CD,则OE=OA,由此可证得CD与⊙O相切.
解答:解:(1)∵PA为⊙O的切线,
∴∠OAP=90°;
又∠AOP=60°,
∴∠APO=30°;
由切线长定理知AP=BP,∠PBO=∠PAO=90°;
又OP=OP,
∴△PAO≌△PBO(HL);
∴∠OPB=∠OPA=30°.

(2)①证明:由(1)中知△PAO≌△PBO;
∴∠POB=∠POA,又∠COP=∠DOP;
∴∠COA=∠DOB,而∠CAO=∠DBO=90°,OA=OB,
∴△AOC≌△BOD;
∴AC=BD;
②延长射线PA到F使AF=BD,
∵OA=OB,∠OAF=∠OBD;
∴△OAF≌△OBD;
∴OF=OD;
∵△PCD的周长为l,l=2AP,
∴l=PA+PB=PC+PD+AC+BD=PC+PD+CD;
∴CD=AC+BD,
∵AF=BD,
∴CF=CD;
又∵OC=OC,OF=OD;
∴△OFC≌△OCD(SSS);
所以CF和CD边上所对应的高也应该相等.
过OE⊥CD于E,则OE=OA=R(R为半径长度);
所以CD与⊙O相切.
点评:此题主要考查学生对切线长定理、全等三角形的判定和性质、切线的判定等知识点的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=2PB,求
PAPB
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,PA、PB是⊙O的切线;A、B是切点;连接OA、OB、OP,
(1)若∠AOP=60°,求∠OPB的度数;
(2)过O作OC、OD分别交AP、BP于C、D两点,
①若∠COP=∠DOP,求证:AC=BD;
②连接CD,设△PCD的周长为l,若l=2AP,判断直线CD与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,PA切⊙O于A,△ABC为⊙O的内接三角形,CA∥EP,AB、CB的延长线分别交DP精英家教网于点D、E.
(1)求证:DE•DP=DA•DB.
(2)若AB=4,AC=6,DB=3,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠ACB=65°,则∠APB等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,PA切⊙O于A点,PO交⊙O于B点.PA=15cm,PB=9cm.求⊙O的半径长.

查看答案和解析>>

同步练习册答案