精英家教网 > 初中数学 > 题目详情

【题目】如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.

(1)求证:AE=EF.

(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点 ”其余条件不变,那么结论AE=EF是否成立呢?若成立,请你证明这一结论,若不成立,请你说明理由.

【答案】(1)证明见解析;(2)成立,证明见解析

【解析】试题分析:(1)AB的中点G,连接EG,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.
(2)AB上取一点M,使AM=EC,连接ME,根据已知条件利用ASA判定△AME≌△ECF,因为全等三角形的对应边相等,所以AE=EF.

试题解析:

(1)证明:取AB的中点G,连接EG

∵四边形ABCD是正方形∴AB=BC,∠B=∠BCD=∠DCG=90°

∵点E是边BC的中点

AM=EC=BE

∴∠BGE=∠BEG=45°

∴∠AGE=135°,

CF平分∠DCG

∴∠DCF=∠FCG=45°,

∴∠ECF=180°-∠FCG=135°,

∴∠AGE=∠ECF

∵∠AEF=90°

∴∠AEB+∠CEF=90°,

又∵∠AEB+∠GAE=90°,

∴∠GAE=∠CEF

在△AGE和△ECF中,∠GAE=∠CEFAG=CE,∠AGE=∠ECF∴△AGE≌△ECFASA),∴AE=EF

(2)证明:在AB上取一点M,使AM=EC,连结ME

BM=BE∴∠BME=45°∴∠AME=135°.

CF是外角平分线,

∴∠DCF = 45°.

∴∠ECF = 135°.

∴∠AME = ∠ECF .

∵∠AEB +∠BAE=90°,∠AEB + ∠CEF = 90°,

∴∠BAE = ∠CEF.

∴△AME ≌ △ECFASA).

AE=EF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】x=﹣4是关于x的方程ax2﹣6x﹣8=0的一个解,则a=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S2=51S2=12,由此可知(  )

A. 甲比乙的成绩稳定B. 乙比甲的成绩稳定

C. 甲、乙两人的成绩一样稳定D. 无法确定谁的成绩更稳定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、200、100、50、10的区域,顾客就可以获得500元、200元、100元、50元、10元的购物券一张(转盘等分成20份)。

(1)小华购物450元,他获得购物券的概率是多少?

(2)小丽购物600元,那么:

① 她获得50元购物券的概率是多少?

② 她获得100元以上(包括100元)购物券的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知xa+b=6,xb=3,求xa的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.

(1)求证:BO=DO;

(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为6cm,当OP=6cm时,点P在_________;当OP__________时,点P在圆内;当OP___________时,点P不在圆外.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,AC=2cm,BC=4cm,若以点C为圆心,2cm为半径作圆,则点A在⊙C____________,点B在⊙C____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).

(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是

(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.

(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)

查看答案和解析>>

同步练习册答案