精英家教网 > 初中数学 > 题目详情
已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从点A出发,沿A→B→C→E运动,到达E点.若点P经过的路程为自变量x,△APE的面积为函数y,则当y=
1
3
时,x的值等于______,______.
经过分析,点P只有在AB边,或者BC边上时,才有可能使得y=
1
3

当点P在AB边上时,y=
1
2
•x•1=
1
3
,解得x=
2
3

当点P在BC边上时,如图所示,y=
1
2
•(1+
1
2
)•1-
1
2
•(x-1)•1-
1
2
1
2
•(2-x)=
1
3

解得x=
5
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y1=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.
(1)求二次函数的解析式;
(2)求二次函数的图象与x轴的另一个交点A的坐标;
(3)根据图象写出y2<y1时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线AD与抛物线y=-x2+bx+c交于A(-1,0)和D(2,3)两点,点C、F分别为该抛物线与y轴的交点和顶点.
(1)试求b、c的值和抛物线顶点F的坐标;
(2)求△ADC的面积;
(3)已知,点Q是直线AD上方抛物线上的一个动点(点Q与A、D不重合),在点Q的运动过程中,有人说点Q、F重合时△AQD的面积最大,你认为其说法正确吗?若你认为正确请求出此时△AQD的面积,若你认为不正确请说明理由,并求出△AQD的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数图象过A、B、C三点,点A(-l,0),B(3,0),点C在y轴负半轴上,且OB=OC.
(1)求这个二次函数的解析式:
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象过点(1,5),并求出平移后图象与y轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线C1y1=
1
2
x2-x+1
,点F(1,1).
(I)求抛物线C1的顶点坐标;
(II)①若抛物线C1与y轴的交点为A,连接AF,并延长交抛物线C1于点B,求证:
1
AF
+
1
BF
=2

②取抛物线C1上任意一点P(xP,yP)(0<xP<1),连接PF,并延长交抛物线C1于Q(xQ,yQ).试判断
1
PF
+
1
QF
=2
是否成立?请说明理由;
(III)将抛物线C1作适当的平移,得抛物线C2y2=
1
2
(x-h)2
,若2<x≤m时,y2≤x恒成立,求m的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在直角坐标系中O是坐标原点,四边形AOCB是矩形,0C=6,OA=2,P是边AB上的任意一点.当点P在边AB上移动时,是否存在这样的点P使得OP⊥PC成立?若存在,请求出点P的坐标,画出满足条件的P点,并求出经过D、P、C三点的抛物线的对称轴;若不存在这样的P点,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知抛物线y=
1
4
x2+
3
2
x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=
2
5
DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了美化校园环境,某中学准备在一块空地(如图,矩形ABCD,AB=10m,BC=20m)上进行绿化.中间的一块(图中四边形EFGH)上种花,其他的四块(图中的四个Rt△)上铺设草坪,并要求AE=AH=CF=CG.那么在满足上述条件的所有设计中,是否存在一种设计,使得四边形EFGH(中间种花的一块)面积最大?若存在,请求出该设计中AE的长和四边形EFGH的面积;若不存在,请说明理由!

查看答案和解析>>

同步练习册答案