精英家教网 > 初中数学 > 题目详情
27、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  )
分析:反比例函数上的点的横纵坐标的乘积相等.根据题意和图形可初步判断为点G,利用直角梯形的性质求得点A和点G的坐标即可判断.
解答:解:在直角梯形AOBC中
∵AC∥OB,CB⊥OB,OB=18,BC=12,AC=9
∴点A的坐标为(9,12)
∵点G是BC的中点
∴点G的坐标是(18,6)
∵9×12=18×6=108
∴点G与点A在同一反比例函数图象上
故选A.
点评:此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用,灵活利用直角梯形的性质求得相关点的坐标,再利用反比例函数上的点的横纵坐标的乘积相等来判断.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知在直角梯形ABCD中,BC∥AD,AB⊥AD,底AD=6,斜腰CD的垂直平分线EF交AD于G,交BA的延长线于F,且∠D=45°,求BF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在直角梯形ABCD中,AB∥CD,CD=9,∠B=90°,BC=3
5
,tanA=
5
,P、Q分别是边AB、CD上的动点(点P不与点A、点B重合),且有BP=2CQ.
(1)求AB的长;
(2)设CQ=x,四边形PADQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)以C为圆心、CQ为半径作⊙C,以P为圆心、以PA的长为半径作⊙P.当四边形PADQ是平行四边形时,试判断⊙C与⊙P的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在直角梯形ABCD中,AB∥CD,∠B=∠C=90°,AB=2,BC=7,CD=6,在BC上找一点P,使△ABP∽△DCP,求出BP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是点
(18,6)
(18,6)

查看答案和解析>>

同步练习册答案