精英家教网 > 初中数学 > 题目详情
在数学中,为了简便,记
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1,则
2009
k=1
k-
2010
k=1
k+
2010!
2009!
=
 
分析:本题需根据有理数混合运算的顺序和法则分别进行计算,再把所得结果合并即可.
解答:解:∵
n
k=1
k=1+2+3+…+(n-1)+n

2009
k=1
k-
2010
k=1
k+
2010!
2009!

=(1+2+3…+2008+2009)-(1+2+3+…+2009+2010)+2010
=1+2+3…+2008+2009-1-2-3-…-2009-2010+2010
=0.
故答案为:0.
点评:本题主要考查了有理数的混合运算,在解题时要注意找出规律列出式子并运用简便方法的计算是本题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在数学中,为了简便,记:
n
k=1
k
=1+2+3+…+(n-1)+n,1!=1,2!=2×1,3!=3×2×1…n!=n×(n-1)(n-2)…×3×2×1,则
2006
k=1
k-
2007
k=1
k+
2007!
2006!
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在数学中,为了简便,记
n
k=1
k=1+2+3+…+(n-1)+n
10
k=1
((x+k))
=(x+1)+(x+2)+…+(x+10).
(1)请你用以上记法表示:1+2+3+…+2008=
 

(2)化简:
10
k=1
(x-k)

(3)化简:
2008
k=1
(x-k)2-
2007
k=1
(x-k)2-20082

(4)化简:
3
k=1
[(x-k)(x-k-1)]

查看答案和解析>>

科目:初中数学 来源: 题型:

在数学中,为了简便,记
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1.则
2010
k=1
k-
2011
k=1
k+
2011!
2010!
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在数学中,为了简便,记
n
k=1
k
=1+2+3+…+(n-1)+n,
n
k=1
(x+k)
=(x+1)+(x+2)+…+(x+n).
(1)请你用以上记法表示:1+2+3+…+2011=
2011
k=1
k
2011
k=1
k

(2)化简:
n
k=1
(x-k)

(3)化简:
3
k=1
[(x-k)(x-k-1)].

查看答案和解析>>

同步练习册答案