【题目】2008年5月12日,四川省发生8.0级地震,某市派出两个抢险救灾工程队赶到汶川支援,甲工程队承担了2400米道路抢修任务,乙工程队比甲工程队多承担了600米的道路抢修任务,甲工程队施工速度比乙工程队每小时少修40米,结果两工程队同时完成任务.
问甲、乙两工程队每小时各抢修道路多少米.
(1)设乙工程队每小时抢修道路x米,则用含x的式子表示:甲工程队每小时抢修道路 米,甲工程队完成承担的抢修任务所需时间为 小时,乙工程队完成承担的抢修任务所需时间为 小时.
(2)列出方程,完成本题解答.
【答案】(1)(x﹣40);;;(2)甲工程队每小时抢修道路160米,乙工程队每小时抢修道路200米
【解析】
(1)甲队每小时比乙少40米,得到甲工程队每小时抢修道路(x﹣40)米,用工作总量除以工作效率得到甲的时间为,乙的时间为;
(2)根据(1)即可列得方程,解方程得到答案.
(1)设乙工程队每小时抢修道路x米,则甲工程队每小时抢修道路(x﹣40)米,甲工程队完成承担的抢修任务所需时间为小时,乙工程队完成承担的抢修任务所需时间为=小时.
故答案为:(x﹣40);;.
(2)依题意,得:=,
解得:x=200,
经检验,x=200是原方程的解,且符合题意,
∴x﹣40=160.
答:甲工程队每小时抢修道路160米,乙工程队每小时抢修道路200米.
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=15,AB=25,点D为斜边AB上动点.
(1)如图1,当CD⊥AB时,求CD的长度;
(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;
(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三角形时,直接写出AD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了多少名学生?
(2)将图甲中“B”部分的图形补充完整;
(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为( )
A. 193 B. 194 C. 195 D. 196
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(十九),用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?
(A) 5 (B) 6 (C) 7 (D) 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,
(1)求证:△ABC≌△EDF;
(2)当∠CHD=120°,猜想△HDB的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,已知中,,,的顶点、分别在边、上,当点在边上运动时,随之在上运动,的形状始终保持不变,在运动的过程中,点到点的最小距离为( )
A. 5 B. 7 C. 12 D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com