3£®Èçͼ£¬Å×ÎïÏßy=ax2+bx+3½»xÖáÓÚA¡¢B½»yÖáÓÚC£¬Å×ÎïÏߵĶԳÆÖáΪx=1£¬OB=3AO
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôPΪÅ×ÎïÏßÉÏÒ»¶¯µã£¬M¡¢NÔÚÖ±Ïßl£ºy=-3x-6ÉÏ£¬PM¡ÎyÖᣬ¡÷PMNÊÇÒÔMNΪµ×µÄµÈÑüÈý½ÇÐΣ¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄP¡¢M¡¢NÈý¸öµã£¬Ê¹µÃ¡÷PMNµÄÃæ»ý×îС£¿Èô´æÔÚ£¬ÇóÆä×îÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©½«£¨2£©ÖÐÖ±ÏßlÑØÅ×ÎïÏߵĶԳÆÖáÏòÉÏƽÒÆm¸öµ¥Î»£¬ÉèƽÒƺóµÄÖ±Ïß½»Å×ÎïÏßÓÚF¡¢GÁ½µã£¨Å×ÎïÏßÉϵĵãFÔÚµãCµÄ×ó±ß£©£¬Á¬½ÓOF¡¢OC£®ÎÊÊÇ·ñ´æÔÚÕâÑùµÄÖ±Ïߣ¬Ê¹µÃ¡÷FOGΪ¶Û½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇómµÄÖµ»òÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý¶Ô³ÆÖá·½³Ìx=$\frac{{x}_{1}{+x}_{2}}{2}$Áз½³Ì¼´¿ÉÇóµÃ½á¹û£®
£¨2£©ÉèP×ø±êΪ£¨x£¬x2-2x-3£©£¬ÔòMµã×ø±êΪ£¨x£¬-3x-6£©£¬¹ýµãP×öMNµÄ´¹Ïߣ¬´¹×ãΪQµã£¬ÔòÓÉ¡÷PMNÊÇÒÔMNΪµ×µÄµÈÑüÈý½ÇÐΣ¬ËùÒÔS¡÷PMN=2S¡÷PMQ£¬ÔÚRt¡÷APMQÖУ¬MQ=3PQ£¬Óɹ´¹É¶¨Àí¼ÆËã¿ÉµÃPQ=$\frac{\sqrt{10}}{10}$PM£¬QM=$\frac{3\sqrt{10}}{10}$PM£¬ÓÉS¡÷PMN=2S¡÷PMQ=$\frac{1}{2}$MN¡ÁPQ=$\frac{1}{2}$¡Á2QM¡ÁPQ=QM¡ÁPQ=$\frac{3}{10}$PM2£¬Òò´ËÖ»ÐèÇó³öPMµÄ×îСֵ¼´¿É£¬
£¨3£©ÉèƽÒƺóʱֱÏß½âÎöʽÊÇy=-3x-6+m£¬ÏòÉÏƽÒƵ±¡ÏFOGÊÇÖ±½Çʱ£¬·Ö±ð¹ýF¡¢G×÷FK¡ÍxÖáÓÚK£¬GL¡ÍxÖáÓÚL£¬µÃµ½¡÷FXD¡×¡÷OLG£¬Éè³öµãF£¬GµÄ×ø±ê£¬´úÈë±ÈÀýʽÇóµÃx1x2+y1y2=0£¬ÔÙ°ÑF£¬GµãµÄ×ø±ê´úÈëy=-3x-6+m£¬µÃµ½y1=-3x1-6+m£¬y2=-3x2-6+m£®ËùÒÔy1y2=9x1x2+£¨18-3m£©£¨x1+x2£©+£¨m-6£©2£¬ÁªÁ¢·½³Ì×éÏûÈ¥yµÃx2+x+3-m=0£¬µÃµ½x1Ê®x2=-1£¬x1x2=3-m£¬´úÈëy1y2¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬0£©£¬B£¨x2£¬0£©£¬
¡àOA=-x1£¬OB=x2£¬
¡ßOB=3AO£¬¶Ô³ÆÖáΪx=1£¬
¡à$\frac{{x}_{1}{+x}_{2}}{2}$=$\frac{{x}_{1}{-3x}_{1}}{2}$=1£¬
¡àx1=-1£¬x2=3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©
¡à$\left\{\begin{array}{l}{0=a-b-3}\\{0=9a+3b-3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{a=1}\\{b=-2}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=x2-2x-3£»

£¨2£©ÉèP×ø±êΪ£¨x£¬x2-2x-3£©£¬ÔòMµã×ø±êΪ£¨x£¬-3x-6£©£¬
Èçͼ1£¬¹ýµãP×öMNµÄ´¹Ïߣ¬´¹×ãΪQµã£¬ÔòÓÉ¡÷PMNÊÇÒÔMNΪµ×µÄµÈÑüÈý½ÇÐΣ¬
ËùÒÔS¡÷PMN=2S¡÷PMQ£¬ÔÚRt¡÷APMQÖУ¬MQ=3PQ£¬
Óɹ´¹É¶¨Àí¼ÆËã¿ÉµÃPQ=$\frac{\sqrt{10}}{10}$PM£¬QM=$\frac{3\sqrt{10}}{10}$PM£¬
¡àS¡÷PMN=2S¡÷PMQ=$\frac{1}{2}$MN¡ÁPQ=$\frac{1}{2}$¡Á2QM¡ÁPQ=QM¡ÁPQ=$\frac{3}{10}$PM2£¬
Òò´ËÖ»ÐèÇó³öPMµÄ×îСֵ¼´¿É£¬
PM=yp-yM=£¨ x2-2x-3£©-£¨-3x-6£©=x2+x+3=£¨x+$\frac{1}{2}$£©2+$\frac{11}{4}$£¬
µ±x=-$\frac{1}{2}$ʱ£¬PMÓÐ×îСֵ$\frac{11}{4}$£¬
´ËʱS¡÷PMN=$\frac{3}{10}$PM2=$\frac{363}{160}$£»

£¨3£©´æÔÚ£¬
ÉèƽÒƺóʱֱÏß½âÎöʽÊÇy=-3x-6+m£®
µ±Ö±Ïß¹ýA¡¢CÁ½µãʱ¡ÏFOGÊÇÖ±½Ç£®´Ëʱm=3£¬
µ±Ö±Ïß¹ýOµãʱ£¬¡ÏFOG=180¡ã£¬´Ëʱm=6£¬
¼ÌÐøÏòÉÏƽÒƵ±¡ÏFOGÊÇÖ±½Çʱ£¬
Èçͼ2£¬·Ö±ð¹ýF¡¢G×÷FK¡ÍxÖáÓÚK£¬GL¡ÍxÖáÓÚL£¬
¡à¡÷FXD¡×¡÷OLG£¬
ÉèF£¨x1£¬y1£©£¬G£¨x2£¬y2£©£¬
Ò×µÃx1x2+y1y2=0£¬
¡ày1=-3x1-6+m£¬y2=-3x2-6+m£®y1y2=9x1x2+£¨18-3m£©£¨x1+x2£©+£¨m-6£©2
¡à$\left\{\begin{array}{l}{y=-3x-6+m}\\{y{=x}^{2}-2x-3}\end{array}\right.$ÏûÈ¥yµÃx2+x+3-m=0£¬
¡àx1Ê®x2=-1£¬x1x2=3-m£¬
½âµÃm=3£¨ÉáÈ¥£©»ò16£¬
¡à3£¼m£¼6»ò6£¼m£¼16£®
¡àµ±3£¼m£¼6»ò6£¼m£¼16ʱ£¬¡÷FOGΪ¶Û½ÇÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÁËÇó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄ×îÖµÎÊÌ⣬Èý½ÇÐεÄÃæ»ý£¬ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£¬Ö÷Òª¿¼²éѧÉúÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£¬×÷³ö¸¨ÖúÏßÊÇ×öÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈôҪʹ·Öʽ$\frac{3}{4+x}$ÓÐÒâÒ壬ÔòxµÄÈ¡Öµ·¶Î§ÊÇx¡Ù-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬µãAµÄ×ø±êÊÇ£¨4£¬0£©£®µãPÔÚÖ±Ïßy=-x+mÉÏ£¬ÇÒAP=OP£®
£¨1£©Óú¬mµÄ´úÊýʽ±íʾµãPµÄ×ø±ê£»
£¨2£©µ±AP=4ʱ£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª¹ØÓÚxµÄ²»µÈʽx-2a£¼3µÄ×î´óÕûÊý½âΪ-5£¬ÔòaµÄÈ¡Öµ·¶Î§Îª-4£¼a¡Ü-$\frac{7}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Çó²»µÈʽ×é$\left\{\begin{array}{l}{\frac{x}{2}¡Ý\frac{x-1}{3}}\\{3x-2£¾x+2}\\{\frac{1}{2}x-1¡Ü7-\frac{3}{2}x}\end{array}\right.$µÄ×îСÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈçͼÊǾ­µäÊÖ»úÓÎÏ·¡°¶íÂÞ˹·½¿é¡±ÖеÄͼ°¸£¬Í¼1ÖÐÓÐ8¸ö¾ØÐΣ¬Í¼2ÖÐÓÐ11¸ö¾ØÐΣ¬Í¼3ÖÐÓÐ15¸ö¾ØÐΣ¬¸ù¾Ý´Ë¹æÂÉ£¬Í¼5Öй²ÓУ¨¡¡¡¡£©¸ö¾ØÐΣ®
A£®19B£®25C£®26D£®31

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ò»¼ÒµçÐŹ«Ë¾¸ø¹Ë¿ÍÌṩÁ½ÖÖÉÏÍøÊÕ·Ñ·½Ê½£º·½Ê½AÒÔÿ·ÖÖÓ0.1ÔªµÄ¼Û¸ñ°´ÉÏÍøʱ¼ä¼Æ·Ñ£»·½Ê½B³ýÊÕÔ»ù·Ñ20ÔªÍâÔÙÒÔÿ·ÖÖÓ0.05ÔªµÄ¼Û¸ñ°´ÉÏÍøʱ¼ä¼ÆË㣮ÈçºÎÑ¡ÔñÊÕ·Ñ·½Ê½ÄÜʹÉÏÍøÕ߸üºÏË㣿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ò»ÕÅÖ½µÄºñ¶ÈΪ0.0007814m£¬½«0.0007814ÓÿÆѧ¼ÇÊý·¨±íʾΪ7.814¡Á10-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®$\left\{\begin{array}{l}{x+y=4}\\{3x-y=8}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸