精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B两点的横坐标分别为﹣1和﹣4,且抛物线过原点.

(1)求抛物线的解析式;
(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP , 求 的值.

【答案】
(1)解:∵A,B两点在直线y=﹣x﹣4上,且横坐标分别为﹣1、﹣4,

∴A(﹣1,﹣3),B(﹣4,0),

∵抛物线过原点,

∴c=0,

把A、B两点坐标代入抛物线解析式可得 ,解得

∴抛物线解析式为y=x2+4x


(2)解:∵△ABC为等腰三角形,

∴有AB=AC、AB=BC和CA=CB三种情况,

①当AB=AC时,当点C在y轴上,设C(0,y),

则AB= =3 ,AC=

∴3 = ,解得y=﹣3﹣ 或y=﹣3+

∴C(0,﹣3﹣ )或(0,﹣3﹣ );

当点C在x轴上时,设C(x,0),则AC=

=3 ,解得x=﹣4或x=2,当x=﹣4时,B、C重合,舍去,

∴C(2,0);

②当AB=BC时,当点C在x轴上,设C(x,0),

则有AB=3 ,BC=|x+4|,

∴|x+4|=3 ,解得x=﹣4+3 或x=﹣4﹣3

∴C(﹣4+3 ,0)或(﹣4﹣3 ,0);

当点C在y轴上,设C(0,y),则BC=

=3 ,解得y= 或y=﹣

∴C(0, )或(0,﹣ );

③当CB=CA时,则点C在线段AB的垂直平分线与y轴的交点处,

∵A(﹣1,﹣3),B(﹣4,0),

∴线段AB的中点坐标为(﹣ ,﹣ ),

设线段AB的垂直平分线的解析式为y=x+d,

∴﹣ =﹣ +d,解得d=1,

∴线段AB的垂直平分线的解析式为y=x+1,

令x=0可得y=1,令y=0可求得x=﹣1,

∴C(﹣1,0)或(0,1);

综上可知存在满足条件的点C,其坐标为(0,﹣3﹣ )或(0,﹣3﹣ )或(﹣4+3 ,0)或(﹣4﹣3 ,0)或(﹣1,0)或(0,1)或(2,0)或(0, )或(0,﹣


(3)解:过点P作PQ⊥EF,交EF于点Q,过点A作AD⊥x轴于点D,

∵PE∥OA,GE∥AD,

∴∠OAD=∠PEG,∠PQE=∠ODA=90°,

∴△PQE∽△ODA,

= =3,即EQ=3PQ,

∵直线AB的解析式为y=﹣x﹣4,

∴∠ABO=45°=∠PFQ,

∴PQ=FQ,BG=GF,

∴EF=4PQ,

∴GE=GF+4PQ,

∵S△BGF=3S△EFP

GF2=3× 4PQ2

∴GF=2 PQ,

= =


【解析】(1)由直线解析式可分别求得A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)当AB=AC时,点C在y轴上,可表示出AC的长度,可求得其坐标;当AB=BC时,可知点C在x轴上,可表示出BC的长度,可求得其坐标;当AC=BC时点C在线段AB的垂直平分线与坐标轴的交点处,可求得线段AB的中点的坐标,可求得垂直平分线的解析式,则可求得C点坐标;(3)过点P作PQ⊥EF,交EF于点Q,过点A作AD⊥x轴于点D,可证明△PQE∽△ODA,可求得EQ=3PQ,再结合F点在直线AB上,可求得FQ=PQ,则可求得EF=4PQ,利用三角形的面积的关系可求得GF与PQ的关系,则可求得比值.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点E、点F分别是等边△ABC的边ABAC上的点,且BE=AFCEBF 相交于点P,则∠BPC的大小为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

成绩x/分

频数

频率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

n

80≤x<90

m

0.35

90≤x≤100

50

0.25

请根据所给信息,解答下列问题:
(1)m= , n=
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买A,B两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k0)的图象经过点(1,0)和(0,2).

(1)当﹣2x3时,求y的取值范围;

(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径是4,圆周角∠C=60°,点E时直径AB延长线上一点,且∠DEB=30°,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一架长2.5m的梯子斜靠在竖直的墙上,这时梯足到墙的底端距离为0.7m,若梯子顶端下滑0.4m,则梯足将向外移

A、0.6mB、0.7m C、0.8mD、0.9m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点MON对应的数分别为﹣204,点P为数轴上任意一点,其对应的数为x

1)如果点P到点MN的距离相等,则x   

2)数轴上是否存在点P,使点P到点M、点N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.

3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,长方形ABCD阳光小区内一块空地,已知AB=(2a+6b)米,BC=(8a+4b)米.

1)该长方形ABCD的面积是多少平方米?

2)若EAB边的中点,DFBC,现打算在阴影部分种植一片草坪,这片草坪的面积是多少平方米?

查看答案和解析>>

同步练习册答案