精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,∠BAD=90°,且对角线BD⊥DC,
试问:
①△ABD与△DCB相似吗?请说明理由;
②若AD=2,BC=8,请求出BD的长.

解:①∵BD⊥DC(已知),
∴∠BDC=90°(垂直性质).
而∠BAD=90°(已知),
∴∠BDC=∠BAD(等量代换).
又∵AD∥BC(已知),
∴∠ADB=∠CBD(两直线平行,内错角相等).
∴△ABD∽△DCB(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似).

②∵△ABD∽△DCB,
=
而AD=2,BC=8,
∴BD=4.
分析:(1)根据已知及相似三角形的判定方法进行分析即可.
(2)根据相似三角形的性质进行分析,从而不难求得BD的长.
点评:此题考查了相似三角形的判定和性质;判定为①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似;性质为相似三角形的对应角相等,对应边的比相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案