【题目】如图,先对折矩形得折痕MN,再折纸使折线过点B,且使得A在MN上,这时折线EB与BC所成的角为( )
A.30°B.45°C.60°D.75°
【答案】C
【解析】
延长EA交BC于点F,根据折叠的性质可得DE∥MA∥CB,∠EAB=90°,DM=CM,2∠EBA+∠FBA=90°,然后根据平行线分线段成比例定理证出EA=FA,然后根据垂直平分线的性质可得BE=BF,然后根据三线合一结合已知条件即可求出结论.
解:延长EA交BC于点F
由折叠可得:DE∥MA∥CB,∠EAB=90°,DM=CM,2∠EBA+∠FBA=90°
∴EA:FA=DM:CM=1,
∴EA=FA
∴AB垂直平分EF
∴BE=BF
∴∠EBA=∠FBA
∴3∠EBA=90°
∴∠EBA=30°
∴∠EBF=∠EBA+∠FBA=60°
即折线EB与BC所成的角为60°
故选C.
科目:初中数学 来源: 题型:
【题目】黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,则四边形AEDF的周长是( )
A. 24 B. 28 C. 32 D. 36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
(1)实践操作:中,,为直线上一点,过点作,与直线相交于点,如图①,图②,图③所示,则的形状为______.
(2)问题解决:等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起解决问题.如图④,中,,为上一点,为延长线上一点,且,交于,求证:.
(3)拓展与应用,在(2)的条件下,如图⑤,过点作的垂线,垂足为,若,则的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.给出下列结论:
①;
②
③
④其中正确的是( )
A.②③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题解决)
一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?
小明通过观察、分析、思考,形成了如下思路:
思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;
思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.
请参考小明的思路,任选一种写出完整的解答过程.
(类比探究)
如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:
如图①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点 B 在线段AE 上,点 C 在线段AD 上,请直接写出线段 BE 与线段 CD 的数量与位置关系是关系: ;
(2)操作探究:
如图②,将图①中的△ABC 绕点 A 顺时针旋转α(0°<α<360°),(1)小题中线段 BE 与线段 CD 的关系是否成立?如果不成立,说明理由,如果成立,请你结合图②给出的情形进行证明;
(3)解决问题:
将图①中的△ABC 绕点 A 顺时针旋转α(0°<α<360°),若 DE=2AC,在旋转的过程中,当以 A、B、C、D 四点为顶点的四边形是平行四边形时,在备用图中画出其中的一个情形,并写出此时旋转角α的度数是 度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com