精英家教网 > 初中数学 > 题目详情

【题目】如图,先对折矩形得折痕MN,再折纸使折线过点B,且使得AMN上,这时折线EBBC所成的角为(

A.30°B.45°C.60°D.75°

【答案】C

【解析】

延长EABC于点F,根据折叠的性质可得DEMACB,∠EAB=90°,DM=CM2EBA+∠FBA=90°,然后根据平行线分线段成比例定理证出EA=FA,然后根据垂直平分线的性质可得BE=BF,然后根据三线合一结合已知条件即可求出结论.

解:延长EABC于点F

由折叠可得:DEMACB,∠EAB=90°,DM=CM2EBA+∠FBA=90°

EAFA=DMCM=1

EA=FA

AB垂直平分EF

BE=BF

∴∠EBA=FBA

3EBA=90°

∴∠EBA=30°

∴∠EBF=EBA+∠FBA=60°

即折线EBBC所成的角为60°

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在2030之间(包括2030),且四人间的数量是双人间的5倍.

(1)2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求20182020年寝室数量的年平均增长率;

(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,则四边形AEDF的周长是(   )

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

1)实践操作:中,为直线上一点,过点作,与直线相交于点,如图①,图②,图③所示,则的形状为______.

2)问题解决:等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起解决问题.如图④,中,上一点,延长线上一点,且,求证:.

3)拓展与应用,在(2)的条件下,如图⑤,过点的垂线,垂足为,若,则的长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以的直角边和斜边为边向外作正方形和正方形,连结.给出下列结论:

其中正确的是(

A.②③④B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题解决)

一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将BPC绕点B逆时针旋转90°,得到BP′A,连接PP′,求出∠APB的度数;

思路二:将APB绕点B顺时针旋转90°,得到CP'B,连接PP′,求出∠APB的度数.

请参考小明的思路,任选一种写出完整的解答过程.

(类比探究)

如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD平分AB=AC,则此图中全等三角形有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现:

如图①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点 B 在线段AE 上,点 C 在线段AD 上,请直接写出线段 BE 与线段 CD 的数量与位置关系是关系:

(2)操作探究:

如图②,将图①中的△ABC 绕点 A 顺时针旋转α(0°<α<360°),(1)小题中线段 BE 与线段 CD 的关系是否成立?如果不成立,说明理由,如果成立,请你结合图②给出的情形进行证明;

(3)解决问题:

将图①中的△ABC 绕点 A 顺时针旋转α(0°<α<360°), DE=2AC,在旋转的过程中,当以 A、B、C、D 四点为顶点的四边形是平行四边形时,在备用图中画出其中的一个情形,并写出此时旋转角α的度数是 度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知线段相交于点O,连接.

1)求证:

2)如图2的平分线相交于点P,求证:.

查看答案和解析>>

同步练习册答案