【题目】如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数_____.
【答案】15°或75°
【解析】
因为三角形的高有三种情况,而直角三角形不合题意,故舍去,所以应该分两种情况进行分析,从而得到答案.
(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,
BD为等腰三角形ABC腰AC上的高,并且BD=AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;
(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,
BD为等腰三角形ABC腰AC上的高,并且BD=AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°,底角为15°.
故答案为:15°或75°.
科目:初中数学 来源: 题型:
【题目】为保护和改善环境,发展新经济,国家出台了不限行、不限购等诸多新能源汽车优惠政策鼓励新能源汽车的发展,为响应号召,某市某汽车专卖店销售A,B两种型号的新能源汽车共25辆,这两种型号的新能源汽车的进价、售价如下表:
进价万元辆 | 售价万元辆 | |
A型 | 10 | |
B型 | 15 |
如何进货,进货款恰好为325万元?
如何进货,该专卖店售完A,B两种型号的新能源汽车后获利最多且不超过进货价的,此时利润为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,抛物线与x轴交于,两点,与y轴交于点C,点D为顶点.
求抛物线解析式及点D的坐标;
若直线l过点D,P为直线l上的动点,当以A、B、P为顶点所作的直角三角形有且只有三个时,求直线l的解析式;
如图2,E为OB的中点,将线段OE绕点O顺时针旋转得到,旋转角为,连接、,当取得最小值时,求直线与抛物线的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,对角线AC⊥BD于点O,且AO=BO=4,CO=8,∠ADB=2∠ACB,则四边形ABCD的面积为( )
A.48B.42C.36D.32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,
(1)当t=2时,求△PBQ的面积;
(2)当t=时,试说明△DPQ是直角三角形;
(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线 BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.
(1)求证:AE为⊙O的切线.
(2)当BC=8,AC=12时,求⊙O的半径.
(3)在(2)的条件下,求线段BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC, 点M在△ABC内,点P在线段MC上,∠ABP=2∠ACM.
(1)若∠PBC=10°,∠BAC=80°,求∠MPB的值
(2)若点M在底边BC的中线上,且BP=AC,试探究∠A与∠ABP之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,M、N分别是AC、BD的中点,连接MN
(1)求证:MN⊥BD.
(2)若∠DAC=62°,∠BAC=58°,求∠DMB
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com