精英家教网 > 初中数学 > 题目详情

(8分)如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连结BO、ED,有BO∥ED,作弦EF⊥AC于G,连结DF.

 (1)求证:AB为⊙O的切线;

 (2)若⊙O的半径为5,sin∠DFE=,求EF的长.

 

 

(1)略

(2)

解析:(1)证明:连结OE

     ∵ED∥OB

∴∠1=∠2,∠3=∠OED,

又OE=OD

∴∠2=∠OED

∴∠1=∠3                  (1分)

又OB=OB  OE= OC

∴△BCO≌△BEO(SAS)                                       (2分)

∴∠BEO=∠BCO=90°     即OE⊥AB

∴AB是⊙O切线.                                              (4分)

(2)解:∵∠F=∠4,CD=2·OC=10;由于CD为⊙O的直径,∴在Rt△CDE中有:

 ED=CD·sin∠4=CD·sin∠DFE=                        (5分)

 ∴                         (6分)

在Rt△CEG中,

∴EG=                                         (7分)

根据垂径定理得:                         (8分)

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E精英家教网,连接BO、ED,有BO∥ED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)若⊙O的半径为5,sin∠DFE=
35
,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连接CB,BD是⊙O的直径,∠D=40°,求:∠AO1B,∠ACB和∠CAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郧县三模)如图,⊙O的圆心在坐标原点,⊙O与x轴正半轴交于点B,延长OB至点A使AB=OB,过点A作⊙O的切线AC,切点为C,P为⊙O上一点(不在弧BC上),则cos∠BPC的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•中江县二模)如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连接BO、ED,且BO∥ED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)连接CE,求证:AE2=AD•AC;
(3)若⊙O的半径为5,sin∠DFE=
35
,求EF的长.

查看答案和解析>>

同步练习册答案