精英家教网 > 初中数学 > 题目详情

已知直线l1:y=-4x+8和直线l2:y=2x-4.

(1)在平面直角坐标系中画出这两条直线;

(2)观察图象,求出直线l1l2的交点坐标;

(3)求不等式-4x+8>2x-4的解集.

答案:
解析:

  解:(1)图略.

  (2)由图象可以看出,直线l1和直线l2的交点坐标是(2,0).

  (3)观察图象可知,不等式的解集为x<2.


练习册系列答案
相关习题

科目:初中数学 来源:2011年四川省攀枝花市中考数学试卷 题型:022

如图,已知直线l1:y=x+与直线l2:y=-2x+16相交于点C,直线l1l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG∶S△ABC=________.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:对于任意正实数ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有当ab时,等号成立.

结论:在ab≥2ab均为正实数)中,若ab为定值p,则a+b≥2,只有当ab时,ab有最小值2.  根据上述内容,回答下列问题:

(1)若m>0,只有当m       时,m有最小值        

m>0,只有当m       时,2m有最小值        .

(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=

x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CDy轴交直线L1于点D,试

求当线段CD最短时,点ABCD围成的四边形面积.

 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:对于任意正实数ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有当ab时,等号成立.
结论:在ab≥2ab均为正实数)中,若ab为定值p,则a+b≥2,只有当ab时,ab有最小值2.  根据上述内容,回答下列问题:
(1)若m>0,只有当m      时,m有最小值        
m>0,只有当m      时,2m有最小值       .
(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=
x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CDy轴交直线L1于点D,试
求当线段CD最短时,点ABCD围成的四边形面积.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省江阴华士片八年级下学期期中考试数学卷(带解析) 题型:解答题

阅读理解:对于任意正实数ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有当ab时,等号成立.
结论:在ab≥2ab均为正实数)中,若ab为定值p,则a+b≥2,只有当ab时,ab有最小值2.  根据上述内容,回答下列问题:
(1)若m>0,只有当m      时,m有最小值        
m>0,只有当m      时,2m有最小值       .
(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=
x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CDy轴交直线L1于点D,试
求当线段CD最短时,点ABCD围成的四边形面积.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省江阴华士片八年级下学期期中考试数学卷(解析版) 题型:解答题

阅读理解:对于任意正实数ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有当ab时,等号成立.

结论:在ab≥2ab均为正实数)中,若ab为定值p,则a+b≥2,只有当ab时,ab有最小值2.   根据上述内容,回答下列问题:

(1)若m>0,只有当m       时,m有最小值        

m>0,只有当m       时,2m有最小值        .

(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=

x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CDy轴交直线L1于点D,试

求当线段CD最短时,点ABCD围成的四边形面积.

 

查看答案和解析>>

同步练习册答案