分析 (1)根据弦切角定理和圆周角定理证明∠ABC=∠ACB,得到答案;
(2)作AF⊥CD于F,证明△AEH≌△AEF,得到EH=EF,根据△ABH≌△ACF,得到答案.
解答 证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,
∴∠ABE=∠DAE,又∠EAC=∠EBC,
∴∠DAC=∠ABC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠ABC=∠ACB,
∴AB=AC;
(2)作AF⊥CD于F,
∵四边形ABCE是圆内接四边形,
∴∠ABC=∠AEF,又∠ABC=∠ACB,
∴∠AEF=∠ACB,又∠AEB=∠ACB,
∴∠AEH=∠AEF,
在△AEH和△AEF中,
$\left\{\begin{array}{l}{∠AHE=∠AFE}\\{∠AEH=∠AEF}\\{AE=AE}\end{array}\right.$,
∴△AEH≌△AEF,
∴EH=EF,
∴CE+EH=CF,
在△ABH和△ACF中,
$\left\{\begin{array}{l}{∠ABH=∠ACF}\\{∠AHB=∠AFC}\\{AB=AC}\end{array}\right.$,
∴△ABH≌△ACF,
∴BH=CF=CE+EH.
点评 本题考查的是切线的性质和平行四边形的性质以及全等三角形的判定和性质,运用性质证明相关的三角形全等是解题的关键,注意圆周角定理和圆内接四边形的性质的运用.
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①③② | C. | ②③① | D. | ③②① |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{8}{5}$ | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com