精英家教网 > 初中数学 > 题目详情
(2013•株洲)已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C.
(1)求∠BAC的度数;
(2)求证:AD=CD.
分析:(1)由AB是⊙O的直径,易证得∠ADB=90°,又由∠ABC的平分线BD交⊙O于点D,易证得△ABD≌△CBD,即可得△ABC是等腰直角三角形,即可求得∠BAC的度数;
(2)由AB=CB,BD⊥AC,利用三线合一的知识,即可证得AD=CD.
解答:解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠CDB=90°,BD⊥AC,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
∠ADB=∠CDB
BD=BD
∠ABD=∠CBD

∴△ABD≌△CBD(ASA),
∴AB=CB,
∵直线BC与⊙O相切于点B,
∴∠ABC=90°,
∴∠BAC=∠C=45°;

(2)证明:∵AB=CB,BD⊥AC,
∴AD=CD.
点评:此题考查了切线的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•株洲)已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•株洲)已知a、b可以取-2、-1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是
1
6
1
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•株洲)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)若∠EOD=30°,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•株洲)已知抛物线C1的顶点为P(1,0),且过点(0,
1
4
).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).
(1)求抛物线C1的解析式的一般形式;
(2)当m=2时,求h的值;
(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF-tan∠ECP=
1
2

查看答案和解析>>

同步练习册答案