2£®¶¨ÒåÔËËãmax{a£¬b}£ºµ±a¡Ýbʱ£¬max{a£¬b}=a£»µ±a£¼bʱ£¬max{a£¬b}=b£®Èçmax{-3£¬2}=2£®
£¨1£©max{$\sqrt{7}$£¬3}=3£»
£¨2£©ÒÑÖªy1=$\frac{{k}_{1}}{x}$ºÍy2=k2x+bÔÚͬһ×ø±êϵÖеÄͼÏóÈçͼËùʾ£¬Èômax{$\frac{{k}_{1}}{x}$£¬k2x+b}=$\frac{{k}_{1}}{x}$£¬½áºÏͼÏó£¬Ö±½Óд³öxµÄÈ¡Öµ·¶Î§£»
£¨3£©Ó÷ÖÀàÌÖÂ۵ķ½·¨£¬Çómax{2x+1£¬x-2}µÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ý3£¾$\sqrt{7}$ºÍÒÑÖªÇó³ö¼´¿É£»
£¨2£©¸ù¾ÝÌâÒâµÃ³ö$\frac{{k}_{1}}{x}$¡Ýk2x+b£¬½áºÏͼÏóÇó³ö¼´¿É£»
£¨3£©·ÖΪÁ½ÖÖÇé¿ö£ºµ±2x+1¡Ýx-2ʱ£¬µ±2x+1£¼x-2ʱ£¬½áºÏÒÑÖªÇó³ö¼´¿É£®

½â´ð ½â£º£¨1£©max{$\sqrt{7}$£¬3}=3£®
¹Ê´ð°¸Îª£º3£»

£¨2£©¡ßmax{$\frac{{k}_{1}}{x}$£¬k2x+b}=$\frac{{k}_{1}}{x}$£¬
¡à$\frac{{k}_{1}}{x}$¡Ýk2x+b£¬
¡à´ÓͼÏó¿ÉÖª£ºxµÄÈ¡Öµ·¶Î§Îª-3¡Üx£¼0»òx¡Ý2£»

£¨3£©µ±2x+1¡Ýx-2ʱ£¬max{2x+1£¬x-2}=2x+1£¬
µ±2x+1£¼x-2ʱ£¬max{2x+1£¬x-2}=x-2£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ½»µãÎÊÌâµÄÓ¦Óã¬ÄܶÁ¶®ÌâÒâÊǽâ´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÈçͼËùʾµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ¼°Ïà¹ØÊý¾Ý£¬Ôò¸Ã¼¸ºÎÌåµÄ²àÃæ»ýÊÇ£¨¡¡¡¡£©
A£®30¦ÐB£®24¦ÐC£®15¦ÐD£®12¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬ACÊÇ¡ÑOµÄÏÒ£¬ÒÔOAΪֱ¾¶µÄ¡ÑDÓëACÏཻÓÚµãE£®
£¨1£©ÊÔÅжÏÏ߶ÎOEÓëÏ߶ÎBCµÄ¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÈôFΪBC±ßÉϵÄÖе㣬ÊÔÅж¨ËıßÐÎOFCEµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬Ö±Ïßy=-2x+4Óë×ø±êÖá·Ö±ð½»ÓÚC¡¢BÁ½µã£¬¹ýµãC×÷CD¡ÍxÖᣬµãPÊÇxÖáÏ·½Ö±ÏßCDÉϵÄÒ»µã£¬ÇÒ¡÷OCPÓë¡÷OBCÏàËÆ£¬Çó¹ýµãPµÄË«ÇúÏß½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬¶¨µãA£¨-2£¬0£©£¬¶¯µãBÔÚÖ±Ïßy=xÉÏÔ˶¯£¬µ±Ï߶ÎAB×î¶Ìʱ£¬µãBµÄ×ø±êΪ£¨-1£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬Õý·½ÐÎABCDµÄ±ß³¤Îª4£¬µãP¡¢Q·Ö±ðÊÇCD¡¢ADµÄÖе㣬¶¯µãE´ÓµãAÏòµãBÔ˶¯£¬µ½µãBʱֹͣÔ˶¯£»Í¬Ê±£¬¶¯µãF´ÓµãP³ö·¢£¬ÑØP¡úD¡úQÔ˶¯£¬µãE¡¢FµÄÔ˶¯ËÙ¶ÈÏàͬ£®ÉèµãEµÄÔ˶¯Â·³ÌΪx£¬¡÷AEFµÄÃæ»ýΪy£¬ÄÜ´óÖ¿̻­yÓëxµÄº¯Êý¹ØϵµÄͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®½â·½³Ì×飺
£¨1£©$\left\{\begin{array}{l}{2x+5=y}\\{3x+y=10}\end{array}\right.$£»
£¨2£©$\left\{\begin{array}{l}{2x+3y+z=6}\\{x-y+2z=-1}\\{x+2y-z=5}\end{array}\right.$£»
£¨3£©$\left\{\begin{array}{l}{\frac{x}{4}+\frac{y}{2}=4}\\{3x-2y=16}\end{array}\right.$£»
£¨4£©$\left\{\begin{array}{l}{3£¨x-2£©=2£¨y-2£©}\\{£¨x-2£©+£¨y-2£©=5}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬E£¬F·Ö±ðΪAB£¬ACµÄÖе㣬Ôò¡÷AEFÓë¡÷ABCµÄÃæ»ýÖ®±ÈΪ1£º4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®µÈʽ$\frac{x}{5}$-$\frac{y}{3}$=0ÄܱäÐγÉ3x=5yÂð£¿ÈôÄÜ£¬Çë˵³öÿһ²½µÄ±äÐιý³Ì¼°ÒÀ¾Ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸