精英家教网 > 初中数学 > 题目详情
3.已知关于x的一元二次方程ax2+bx+c=5的一个根是2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线y=ax2+bx+c的顶点坐标为(2,5).

分析 由二次函数y=ax2+bx+c的对称轴是直线x=2,得出顶点横坐标为2,代入函数解析式得出纵坐标ax2+bx+c=5,由此求得顶点坐标即可.

解答 解:∵二次函数y=ax2+bx+c的对称轴是直线x=2,方程ax2+bx+c=5的一个根是2,
∴当x=2时,y=ax2+bx+c=5,
∴抛物线的顶点坐标是(2,5).
故答案为:(2,5).

点评 本题考查的是二次函数的性质,掌握顶点坐标的计算方法是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.△ABC内接于⊙O,已知∠ABC=∠ACB.
(1)如图(1),求证:AO平分∠BAC;
(2)如图(2),点D是弧AC上一点,连接BD交AC于点G,连接CD,弦AE交BD于F、交CD于H,并且AE⊥BD,求证:BD+CD=2BF;
(3)如图(3)在(2)的条件下,BD经过圆心O,连接DE,OG=DH,S△DEH=9$\sqrt{2}$,求OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:(-1)2017+$\sqrt{9}$+($\frac{1}{2}$)-2+$\root{3}{-8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:$\sqrt{3}$,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,$\sqrt{3}$取1.73.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知抛物线y=-x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球面上分别标有“0元”,“10元”,“20元”,“30元”的字样.顾客在该超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),超市根据两小球上所标金额的和返还等额购物券.若某顾客刚好消费200元,则他所获得购物券的金额不低于30元的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,在平面直角坐标系中,直线y=-x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(-4,5),并与y轴交于点C,抛物线的对称轴为直线x=-1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=-1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C,D两乡,从A城往C,D两乡运肥料的费用分别为20元/t和25元/t;从B城往C,D两乡运肥料的费用分别为15元/t和24圆/t.现C乡需要肥料240t,D乡需要肥料260t.设从A城调往C乡肥料xt.
(1)根据题意,填写下表:
                       调入地
               水量/万吨
调出地
CD
Ax200-x
B240-x60+x
总计240260
(2)设调运肥料的总运费y(单位:元)是x的函数,求y与x的函数解析式;
(3)请根据(2)给出完成调运任务总费用最少的调运方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.方程12-x=2x的解是x=4.

查看答案和解析>>

同步练习册答案