【题目】某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得168元的销售利润,销售价应定为多少?
【答案】(1)y与x之间的函数关系式y=-2x+60(10≤x≤18);(2)当销售价为18元时,每天的销售利润最大,最大利润是192元;(3)该经销商想要每天获得168元的销售利润,销售价应定为16元.
【解析】(1)根据题意,设一次函数的解析式为y=kx+b,代入图中的两组已知的点的坐标(10,40),(18,24),利用消元法解二元一次方程组得出k和b的值,即可得出一次函数的解析式。
(2)利根据利润等于一件的利润×件数,可以得到W关于x的表达式,然后根据二次函数的性质求解即可.
(3)将168代入二次函数的关系式,解一元二次方程即可,注意自变量x的取值范围。
(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得
, 解得,
∴y与x之间的函数关系式y=-2x+60(10≤x≤18);
(2)W=(x-10)(-2x+60)=-2x2+80x-600,
对称轴x=20,在对称轴的左侧y随着x的增大而增大,
∵10≤x≤18,∴当x=18时,W最大,最大为192.
即当销售价为18元时,每天的销售利润最大,最大利润是192元
(3)由168=-2x2+80x-600,
解得x1=16,x2=24(不合题意,舍去)
答:该经销商想要每天获得168元的销售利润,销售价应定为16元.
科目:初中数学 来源: 题型:
【题目】如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是( )
A. 甲、乙两地之间的距离为200 kmB. 快车从甲地驶到丙地共用了2.5 h
C. 快车速度是慢车速度的1.5倍D. 快车到达丙地时,慢车距丙地还有50 km
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按要求画图:(1)如图1平面上有五个点,按下列要求画出图形.
①连接;
②画直线交于点;
③画出线段的反向延长线;
④请在直线上确定一点,使两点到点的距离之和最小,并写出画图的依据.
(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注意:只需添加一个符合要求的正方形,并用阴影表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校学生数学兴趣小组为了解本校同学对上课外补习班的态度,在学校抽取了部分同学进行了问卷调查,调查分别为“A﹣非常赞同”、“B﹣赞同”、“C﹣无所谓”、“D﹣不赞同”等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:
(1)抽取了多少名同学进行了问卷调查?
(2)请补全条形统计图.
(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为 度.
(4)若该校有3000名学生,请你估计该校学生对持“赞同”和“非常赞同”两种态度的人数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ΔABC中,AB=AC,∠A=40O,延长AC到D,使CD=BC,点P是ΔABD的内心,则∠BPC=
A. 105° B. 110° C. 130° D. 145°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.
(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?
(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com