【题目】已知函数,下列说法:①方程必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动个单位;③当时,抛物线顶点在第三象限;④若,则当时,随着的增大而增大,其中正确的序号是________.
【答案】①③
【解析】
把函数解析式化为一般式,再结合方程、函数图象等进行判断即可.
∵y=k(x+1)(x-)=k+(k-3)x-3,
∴方程k(x+1)(x-)=-3可化为k+(k-3)x-3=-3,即k+(k-3)x=0,该方程有实数根,故①正确;
当函数图象向上平移3个单位时,解析式为y=k+(k-3)x,则其图象过原点,故②不正确;
在y=k+(k-3)x-3中,令x=3可得y=-3,
当k>3时,其对称轴为x=-<0,且过(0,-3)点,此时其顶点坐标在第三象限,故③正确;
当k<0时,抛物线开口向下,且对称轴在y轴的左侧,但无法确定-1与的大小关系,当<-1即k>-3时,当时,不随着的增大而增大故④不正确; 综上可知正确的是①③,
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,,,,相交于点.
求边的长;
如图,将一个足够大的直角三角板角的顶点放在菱形的顶点处,绕点左右旋转,其中三角板角的两边分别与边,相交于点,,连接与相交于点.
①判断是哪一种特殊三角形,并说明理由;
②旋转过程中,当点为边的四等分点时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
若一个整数能表示成a2+b2(a、b是整数)的形式,则称这个数为“平和数”,例如5是“平和数”,因为5=22+1,再如,M=x2+2xy+2y2=(x+y)2+y2(x, y是整数),我们称M也是“平和数”.
(1)请你写一个小于5的“平和数”,并判断34是否为“平和数”.
(2)已知S=x2+9y2+6x﹣6y+k(x,y是整数,k是常数,要使S为“平和数”,试求出符合条件的一个k值,并说明理由.
(3)如果数m,n都是“平和数”,试说明也是“平和数”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形中,、分别是边、的中点,分别交、于、.请判断下列结论:;;;.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】选取二次三项式中的两项,配成完全平方式的过程叫做配方.例如
①选取二次项和一次项配方:;
②选取二次项和常数项配方:,或;
③选取一次项和常数项配方:.
根据上述材料,解决下面问题:
写出的两种不同形式的配方;
若,求的值;
若关于的代数式是完全平方式,求的值;
用配方法证明:无论取什么实数时,总有恒成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,图中,分别表示两人的路程与小明追赶时间的关系.
(1)哪条线表示小明的路程与时间之间的关系?
(2)小明让小亮先跑了多少米?
(3)谁将赢得这场比赛?
(4)对应的一次函数表达式中,一次项系数是多少?它的实际意义是什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】悦达汽车4S店“十一”黄金周销售某种型号汽车,该型号汽车的进价为30万元/辆,若黄金周期间销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,黄金周期间销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,悦达汽车4S店计划黄金周期间销售利润25万元,那么需售出多少辆汽车?(注:销售利润=销售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.
(1)求n的值;
(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;
(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com