【题目】如图1,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC.
(1)延长BA到M,使AM=AD,连接CM,求∠ACM的度数.
(2)如图2,若CE⊥BD于E,则BD与EC存在怎样的数量关系?请说明理由.
(3)如图3,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q为∠FCP与∠CPF的角平分线的交点.当点P运动时,点Q是否一定在射线BD上?若在,请证明;若不在,请说明理由.
【答案】(1)22.5°;(2)BD=2CE,理由见解析;(3)点Q一定在射线BD上.
【解析】试题分析: (1)通过证明△BDA≌△MCA,得到∠DBA=∠MCA,再根据BD平分∠ABC得∠ABD=22.5°,得到∠ACM=22.5°;
(2)延长CE交BA的延长线于点G,通过判定△ABD≌△ACG,得出BD=CG=2CE即可;
(3)连接CQ,过点Q作QM⊥BP于M,作QN⊥BC于N,在等腰直角△CPF中,求得∠QCP=∠QPC=22.5°,进而得出△PQC中,∠PQC=135°;在四边形QNBM中,根据QM⊥BP,QN⊥BC,∠ABC=45°,得到∠MQN=135°,进而得到∠NQC=∠MQP,根据AAS判定△QPM≌△QCN,得出QM=QN,最后根据角平分线的性质定理的逆定理,得出点Q一定在射线BD上.
试题解析:
(1)∵∠BAC=90°,
∴∠CAM=90°,
∴∠BAC=∠CAM,
又∵AB=AC,AM=AD,
∴△BDA≌△MCA,
∴∠DBA=∠MCA,
∵BD平分∠ABC,
∴∠ABD=22.5°,
∴∠ACM =22.5°;
故答案为:22.5°.
(2)如图,延长CE交BA的延长线于点G,
∵BD平分∠ABC,CE⊥BD,
∴CE=GE,
在△ABD与△ACG中,
,
∴△ABD≌△ACG(AAS),
∴BD=CG=2CE;
(3)点Q一定在射线BD上,
理由:如图,连接CQ,过点Q作QM⊥BP于M,作QN⊥BC于N,
∵QF为∠PFC的角平分线,△CPF为等腰直角三角形,
∴QF为PC的垂直平分线,
∴PQ=QC,
∵Q为∠FPC与∠PFC的角平分线的交点,
∴CQ平分∠FCP,
∵△CPF为等腰直角三角形,
∴∠FCP=∠FPC=45°,
∴∠QCP=∠QPC=22.5°,
∴△PQC中,∠PQC=135°,
∵在四边形QNBM中,QM⊥BP,QN⊥BC,∠ABC=45°,
∴∠MQN=135°,
∴∠MQN=∠PQC,
∴∠NQC=∠MQP,
又∵QC=QP,QM⊥BP,QN⊥BC,
∴△QPM≌△QCN(AAS),
∴QM=QN,
又∵QM⊥BP,QN⊥BC,
∴点Q一定在射线BD上.
点睛: 本题主要考查了三角形的综合应用,解题时需要运用三角形内角和定理、等腰直角三角形的性质、角平分线的定义以及全等三角形的判定与性质等知识.解决问题的关键是作辅助线,构造全等三角形,根据全等三角形的性质进行推导.解题时注意:到角两边距离相等的点在这个角的平分线上.
科目:初中数学 来源: 题型:
【题目】2020年1月13日,中国汽车工业协会公布的数据显示:2019年,中国汽车累计生产约25 700000辆.数据25700000用科学记数法表示为( )
A.257×105B.25.7×106C.2.57×107D.0.257×108
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,点A、B、C的坐标分别为(-1,0)、(-2,3)、(-3,1).
(1)作出△ABC关于x轴对称的 △A1B1C1,并写出B1、C1
两点的坐标:B1: , C1: .
(2)△ABC的面积S△ABC= .
(3)若D点在y轴上运动,求CD+DA的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着移动互联网的快速发展,共享单车在余姚的大街小巷随处看见,解决了很多人的交通出行问题,李老师早上骑单车上班,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑单车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线AB∥CD,E为直线AB、CD之间的一点.
(1)如图1,若∠B=15°,∠BED=90°,则∠D=°;
(2)如图2,若∠B=α,∠D=β,则∠BED=;
(3)如图3,若∠B=α,∠C=β,则α、β与∠BEC之间有什么等量关系?请猜想证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com