精英家教网 > 初中数学 > 题目详情

【题目】点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b-2)2=0

(1)求线段AB的长;

(2)如图1 点C在数轴上对应的数为x,且x是方程2x+1=x-5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;

(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM-BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值

【答案】15;(2)点P对应的数是-4.5或3.5;(3)正确的结论是:PM-BN的值不变,且值为2.5.

【解析】

试题分析:(1)利用非负数的性质求出a与b的值,即可确定出AB的长;(2)求出已知方程的解确定出x,得到C表示的点,设点P在数轴上对应的数是m,由PA+PB=BC+AB确定出P位置,即可做出判断;(3)设P点所表示的数为n,就有PN=n+3,PB=n-2,根据条件就可以表示出PM=,BN=×(n-2),再分别代入PM-BN和PM+BN求出其值即可.

试题解析:(1)|a+3|+(b-2)2=0,

a+3=0,b-2=0,

a=-3,b=2,

AB=|-3-2|=5.

答:AB的长为5;

(2)2x+1=x-5,

x=-4,

BC=6.

设点P在数轴上对应的数是m,

PA+PB=BC+AB=×6+5=8,

当P在B点右侧时

5+2BP=8,

BP=

点P对应的数为+2=

当P在B点左侧时

5+2AP=8,

AP=

点P对应的数为-3-=

点P对应的数是-4.5或3.5;

(3)设P点所表示的数为n,

PN=n+3,PB=n-2.

PA的中点为M,

PM=PN=

N为PB的三等分点且靠近于P点,

BN=PB=×(n-2).

PM-BN=-××(n-2)=(不变).

PM+BN=+××(n-2)=n-(随P点的变化而变化).

正确的结论是:PM-BN的值不变,且值为2.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上). 现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”);②点B的纵坐标表示的实际意义是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)

进价(元/件)

20

30

售价(元/件)

29

40

(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?

(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P1次向上跳动1个单位至点,紧接着第2次向左跳动2个单位至点,第3次向上跳动1个单位至点,第4次向右跳动3个单位至点,第5次又向上跳动1个单位至点,第6次向左跳动4个单位至点照此规律,点P100次跳动至点的坐标是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:线段AB=40cm.

(1)如图①,点P沿线段AB自点A向点B3厘米/秒运动,同时点Q线段BAB点向点A5厘米/秒运动,问经过几秒后P、Q相遇?

(2)几秒钟后,P、Q相距16厘米?

(3)如图②,AO=PO=8厘米,∠POB=40°,点P绕点O20/秒的速度顺时针旋转一周停止,同时点Q沿直线BAB点向点A运动,假若P、Q两点能相遇,求Q运动的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在所给图形中:

⑴求证:∠BDC=∠A+∠B+∠C;

⑵如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠B、∠C这4个角之间有怎样的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】红红有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各题:

+3 +2 +1 0 -2

(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是 .

(2)从中取出2张卡片,使这2张卡片数字相除商最小,最小值是 .

(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,(注:每个数字只能用一次,如:23×[1-(-2)]),请另写出两种符合要求的运算式子.

查看答案和解析>>

同步练习册答案