【题目】如图,平面直角坐标系中,一次函数(为常数,)的图像与轴、轴分别相交于点,半径为4的⊙与轴正半轴相交于点,与轴相交于点,点在点上方.
(1)若直线与弧有两个交点.
①求的度数;
②用含的代数式表示,并直接写出的取值范围;
(2)设,在线段上是否存在点,使?若存在,请求出点坐标;若不存在,请说明理由.
【答案】(1)①45°;②,();(2)b=5时存在,点P的坐标为,
当b>5时,直线与圆相离,不存在P,理由见解析.
【解析】
(1)连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,
(2)作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的范围,
(3)当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用△APO∽△AOB和△AMP∽△AOB相似得出点P的坐标,.
解:(1)①如图,
∵,
∴,(圆周角定理)
②方法一:
如图,作于,连接,
∵,直线的函数式为:,
∴所在的直线函数式为:,
∴交点
∴,
∵,
∴,
∵,
∴,
∵直线与弧有两个交点,
∴,
∴,()
方法二:
如图,作于点,连接,
∵直线的函数式为:,
∴的坐标为,的坐标为,
∴,
∴,
∴,
∴,
∴在中,,
∵,
∴,
∵直线与弧有两个交点,
∴,
∴,()
(2)如图,
当时,直线与圆相切,
∵在直角坐标系中,,
∴,
∴存在点,使,
连接,
∵是切点,
∴,
∴∽,
∴,
∵,,,
∴,即,
∵,
作交于点,设的坐标为,
∵∽,
∴,
∴,
∴,
∴,
∴点的坐标为,
当时,直线与圆相离,不存在.
故答案为:(1)45°;(2),();(3)b=5时存在,点P的坐标为,
当b>5时,直线与圆相离,不存在P,理由见解析.
科目:初中数学 来源: 题型:
【题目】如图的矩形ABCD中,E为AB的中点,有一圆过C、D、E三点,且此圆分别与AD、BC相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:
(甲) 作∠DEC的角平分线L,作DE的中垂线,交L于O点,则O即为所求;
(乙) 连接PC、QD,两线段交于一点O,则O即为所求.
对于甲、乙两人的作法,下列判断何者正确?( )
A. 两人皆正确 B. 两人皆错误
C. 甲正确,乙错误 D. 甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.
(1)填空:点的坐标为_________,抛物线的解析式为_________;
(2)当点在线段上运动时(不与点,重合),
①当为何值时,线段最大值,并求出的最大值;
②求出使为直角三角形时的值;
(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,ABAD=BCAE.
(1)求证:∠BAC=∠AED;
(2)在边AC取一点F,如果∠AFE=∠D,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度与时间(天)的变化规律如图所示,其中线段表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度与时间成反比例关系
(1)求整改过程中硫化物的浓度与时间的函数表达式(要求标注自变量的取值范围)
(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,点D是BC中点,AE∥BC,CE∥AD.
(1)求证:四边形ADCE是菱形;
(2)过点D作DF⊥CE于点F,∠B=60°,AB=6,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;
(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为,OP=1,求BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com