精英家教网 > 初中数学 > 题目详情

【题目】已知:在平面直角坐标系中,点O为坐标原点,直线x轴于点A,交y轴于点B,点D在直线AB上,点D的纵坐标为6,点Cx轴上且位于原点右侧,连接CD,且

如图1,求直线CD的解析式;

如图2,点P在线段ABP不与点AB重合,过点P轴,交CD于点Q,点EPQ的中点,设P点的横坐标为tEQ的长为d,求dt之间的函数关系式,并直接写出自变量t的取值范围;

如图3,在的条件下,以CQ为斜边作等腰直角,且点M在直线CD的右侧,连接OEOM,当时,求点M的坐标.

【答案】1 2 3

【解析】

1AD两点在直线y=2x+4上,可依条件建立方程求得坐标,再根据等腰三角形性质求得点C坐标,应用待定系数法求直线CD解析式;

2)点P在线段AB上,可得Pt2t+4),根据PQx轴,可得PQ纵坐标相等,求得Q-t+22t+4),根据EPQ中点,可得d=EQ=12PQ=-t+1

3)过MSRx轴于R,交PQ延长线于S,利用等腰三角形两腰相等构造全等三角形,在TQ上截取TF=OT,构造等腰RtTOF,应用相似三角形判定和性质,建立方程求解.

1)如图1

直线y=2x+4经过点AD

y=0时,x=-2

A-20),

y=6时,x=1

D16),

过点DDLx轴于点L

L10),

AL=3

AD=CD

AL=CL=3

OC=1+3=4

C40),

设直线CD的解析式为y=kx+b,将C40),D16)代入得

解得k=-2b=8

∴直线CD的解析式为y=-2x+8

2)如图2,过点PQ分别作PFx轴于点FQGx轴于点GPQy轴于点T

∵点P在直线y=2x+4上且点P的横坐标为t

∴点P的坐标为(t2t+4),

PQz轴,

∴∠OTQ=AOT=90°,

PQy轴,

OT=2t+4

∴点Q的纵坐标为2t+4

Q在直线y=-2x+8上,当y=2t+4时,2t+4=-2x+8,解得x=-2t+2

∴点Q的坐标为(-t+22t+4),

∵∠PFC=QGC=90°

PFQG

又∵PQFG

∴四边形PFGQ为平行四边形

PQ=FG=-t+2-t=-2t+2

EPQ的中点

EP=EQ=PQ=-2t+2=-t+1

d=-t+1 -1<t<0);

3)如图3,过点Mx轴的垂线,垂足为R,交PQ的延长线于点S

∵∠CMQ=90°,CM=MQ

∴∠QCM=45°

在△OCM中,∠COM+OMC+OCM=180°

∴(90°-BCE-ECM+90°-OMQ+(∠ACD+45°)=180°

又∵∠BOE+OMQ=ACD

∴∠EOM=45°

CR=m

∵∠OTS=TOR=ORS=90°

∴四边形ORST是矩形

RS=OT=2t+4TS=OR=m+4

QS=m+4--t+2=m+t+2

CM=QM,∠CRM=MSQ=90°,∠MCR=90°-CMR=QMS

∴△QMS≌△MCR

MS=CR=mMR=QS=m+t+2

MS+MR=RS

m+m+t+2=2t+4

m=t+1

MR=t+3OR=t+5

TQ上截取TF=OT=2t+4,连接OF,过点EEHOF于点H

则∠COF=TFO=45°,OF=OT=2t+4),EF=FT-ET=2t+4--t+1+t=2t+3EH=FH=EF=2t+3),

OH=OF-FH=2t+4-2t+3=2t+5),

∵∠MOR=45°-FOM=EOH

tanMOR=tanEOH

RtMOR中,tanMOR=,在RtOEH中,tanEOH=

MROH=OREH

解得(舍去)

过点MMKy轴于点K,可证四边形ORMK是矩形

M的坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知中,,(其中),连接,点为线段的中点,连接绕点顺时针旋转,探究线段的数量关系.

1)如图1,点落在边上时,探究的数量关系,并说明理由;

2)如图2,点落在内部时,探究的数量关系,并说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC 内接于⊙O,过点 A 作⊙O 的切线交 CB 的延长线于点 P,且∠PAB=45°

1)如图 1,求∠ACB 的度数;

2)如图 2AD 是⊙O 的直径,AD BC 于点 E,连接 CD,求证:AC CD

3)如图 3 ,在(2)的条件下,当 BC 4CD 时,点 FG 分别在 APAB 上,连接 BFFG,∠BFG=P,且 BF=FG,若 AE=15,求 FG 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抗击疫情,众志成城,举国上下,共克时艰.为确定应对疫情影响稳外贸稳外资的新举措,国务院总理李克强 3 10 日主持召开国务院常务会议,要求更好发挥专项再贷款再贴 现政策作用,支持疫情防控保供和企业纾困发展.会议指出,近段时间,有关部门按照国务 院要求,引导金融机构实施亿元专项再贷款政策,以优惠利率资金有力支持了疫情防 控物资保供、农业和企业特别是小微企业复工复产.要进一步把政策落到位,加快贷款投放 进度,更好保障防疫物资保供、春耕备耕、国际供应链产品生产、劳动密集型产业、中小微 企业等资金需求.数据亿元用科学记数法表示为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究 如图,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线经过两点且与轴的负半轴交于点

1)求该抛物线的解析式;

2)若为直线上方抛物线上的一个动点,当时,求点的坐 标;

3)已知分别是直线和抛物线上的动点,当以为顶点的四边形 是平行四边形,且以为边时,请直接写出所有符合条件的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解七、八年级学生对防溺水安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:

a.七年级成绩频数分布直方图:

b.七年级成绩在这一组的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年级成绩的平均数、中位数如下:

年级

平均数

中位数

76.9

m

79.2

79.5

根据以上信息,回答下列问题:

1)在这次测试中,七年级在80分以上(含80分)的有   人;

2)表中m的值为   

3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;

4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形中,,点在边上,且沿对折至,延长交边于点,连结.下列结论:①;②;③;④其中正确结论的序号是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司投入研发费用40万元(40万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为4/件.此产品年销售量y(万件)与售价x(元件)之间满足函数关系式y=﹣x+20

(1)求这种产品第一年的利润W(万元)与售价x(元件)满足的函数关系式;

(2)该产品第一年的利润为24万元,那么该产品第一年的售价是多少?

(3)第二年,该公司将第一年的利润24万元(24万元只计入第二年成本)再次投入研发,使产品的生产成本降为3/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过10万件.请计算该公司第二年的利润W2至少为多少万元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图像过点,,与轴交于另一点,且对称轴是直线.

(1)求该二次函数的解析式;

(2)若上的一点,作,当面积最大时,求的坐标;

(3)轴上的点,过轴,与抛物线交于,过轴于.当以为顶点的三角形与为顶点的三角形相似时,求点的坐标.

查看答案和解析>>

同步练习册答案