精英家教网 > 初中数学 > 题目详情
(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.
(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;
(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明).
(1)证明:如图①,连接OQ,
∵OB=OQ,
∴∠OBP=∠OQB,
∵OA⊥OB,
∴∠BQA=
1
2
∠AOB=
1
2
×90°=45°,
∵EQ是切线,
∴∠OQE=90°,
∴∠OBP+∠AQE=∠OQB+∠AQE=90°-∠BQA=90°-45°=45°;

(2)如图②,连接OQ,
∵OB=OQ,
∴∠OBQ=∠OQB,
∵OA⊥OB,
∴∠BQA=
1
2
×(360°-90°)=135°,
∴∠OQA=∠BQA-∠OQB=135°-∠OBQ,
∵EQ是切线,
∴∠OQE=90°,
∴135°-∠OBQ+∠AQE=90°,
整理得,∠OBQ-∠AQE=45°,
即∠OBP-∠AQE=45°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,半圆与矩形的三边切于A、B、F,对角线AC交⊙O于点E,若⊙O的直径为8cm,则CE=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,PA为⊙O的切线,A为切点,割线PBC过圆心O,PA=4,PB=2.
(1)求BC、AB的长;
(2)若∠BAC的平分线与BC和⊙O分别相交于点D、E.求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.
(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);
(II)如图②,连接CD、CE,若四边形ODCE为菱形,求
OD
OA
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知⊙O的半径为5,直线l与⊙O相交,点O到直线l的距离为2,则⊙O上到直线l的距离为3的点的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在Rt△ABC中,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C,则⊙O的半径是(  )
A.
10
3
B.
16
3
C.
20
3
D.
23
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,大圆O与小圆O1相切于点A,大圆的弦CD与小圆相切于点E,且CDAB,若CD=2cm,则阴影部分的面积S阴影=______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,四边形ABCD是长方形,以BC为直径的半圆与AD边相切,且AB=2,则阴影部分的面积为______.

查看答案和解析>>

同步练习册答案