精英家教网 > 初中数学 > 题目详情
精英家教网如图,以Rt△ABC的三边向外作正△ABE、正△GBC、正△ACF,且AB=3,AC=4,则S△BED+S△CHF-S四边形ADGH=
 
分析:把所求的面积的和差分别表示为:
S△ABE-S△ABD+S△AFC-S△AHC-S四边形ADGH
=S△ABE+S△AFC-(S△ABD+S△AHC+S四边形ADGH
=S△ABE+S△AFC+S△ABC-S△BCG,分别代入面积求解即可.
解答:解:∵∠BAC=90°,AB=3,AC=4,
∴BC=5,
∴S△ABE=
9
3
4
,S△AFC=4
3
,S△ABC=6,S△BCG=
25
3
4

∵S△BED+S△CHF-S四边形ADGH
=S△ABE-S△ABD+S△AFC-S△AHC-S四边形ADGH
=S△ABE+S△AFC-(S△ABD+S△AHC+S四边形ADGH
=S△ABE+S△AFC+S△ABC-S△BCG
=
9
3
4
+4
3
+6-
25
3
4

=6.
∴应填6.
点评:本题需要将所求的问题进行转化,根据图形的特点,将复杂的问题转化成简单的问题来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接ED、BD.
(1)求证:△ABC∽△BCD
(2)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC各边为直径的三个半圆围成两个新月形(阴影部分),已知AC=3cm,BC=4cm.则新月形(阴影部分)的面积和是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,以Rt△ABC的斜边AB为直径作⊙0,D是BC上的点,且有弧AC=弧CD,连CD、BD,在BD延长线上取一点E,使∠DCE=∠CBD.
(1)求证:CE是⊙0的切线;
(2)若CD=2
5
,DE和CE的长度的比为
1
2
,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的直角边AC为直径作圆O交斜边AB于点D,若劣弧CD=120°,则
BDAD
=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•黔南州)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-16x+60=0的两个根,求直角边BC的长.

查看答案和解析>>

同步练习册答案