精英家教网 > 初中数学 > 题目详情

计算与解方程:
(1)33+(-32)+7-(-3)
(2)-|-32|÷3×(-数学公式)-(-2)3
(3)2(a2b-2ab2+c)-(2c+3a2b-ab2
(4)(-2)3-2×(-3)+|2-5|-(-1)2010
(5)化简求值:3x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-数学公式
(6)已知多项式(2mx2+5x2+3x+1)-(5x2-4y2+3x)化简后不含x2项.求多项式2m3-[3m3-(4m-5)+m]的值.
(7)解方程:①3x+3=2x+7         ②数学公式

解:(1)原式=1+7+3=11;

(2)原式=-9××(-)+8
=1+8
=9;

(3)原式=2a2b-4ab2+2c-2c-3a2b+ab2
=-a2b-3ab2

(4)原式=-8+6+3-1=0;

(5)原式=3x2y-6xy+8xy-4+x2y+1=4x2y+2xy-3,
当x=-时,原式=4x2y+2xy-3=-3.

(6)(2mx2+5x2+3x+1)-(5x2-4y2+3x)化简得2mx2+4y2+1
∵化简后不含x2项.
∴2m=0即m=0,
∴2m3-[3m3-(4m-5)+m]=-5.

(7)①移项合并得:x=4;
②去分母得:4(x+1)=5(x+1)-6,
移项合并得:(x+1)=6,
∴可得:x=5.
分析:(1)直接进行有理数的加减运算即可.
(2)先进行幂的运算,然后再根据先乘除后加减的法则进行计算.
(3)先去括号,然后合并同类项即可得出答案.
(4)先进行幂和绝对值的运算,然后再根据先乘除后加减的法则进行计算.
(5)先去括号,然后合并同类项得出最简整式,然后再将x的值代入即可.
(6)化简后不含x2项即可得出x2项的系数为0,从而可得m的值,将要求整式化为最简后代入m的值可得出答案.
(7)①移项合并后即可得出答案;②将(x+1)看作一个整体,先去分母,然后移项合并,最后化系数为1,求出x+1的值后即可得出x的值.
点评:本题考查了整式的化简求值及解方程的知识,有一应难度,综合性比较强,注意在运算时要细心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算与解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)

(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2

(3)
5
2x+3
=
3
x-1

(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中数学 来源: 题型:

计算与解方程:
(1)
2
2
+1
-(
2
-
3
)0+
18
-
1
2
÷2-2

(2)(2x-3)2-(2x-3)=6.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算与解方程:
(1)33+(-32)+7-(-3)
(2)-|-32|÷3×(-
1
3
)-(-2)3
(3)2(a2b-2ab2+c)-(2c+3a2b-ab2)、
(4)(-2)3-2×(-3)+|2-5|-(-1)2010
(5)化简求值:3x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-
1
2

(6)已知多项式(2mx2+5x2+3x+1)-(5x2-4y2+3x)化简后不含x2项.求多项式2m3-[3m3-(4m-5)+m]的值.
(7)解方程:①3x+3=2x+7         ②
2(x+1)
3
=
5(x+1)
6
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

计算与解方程
(1)3
2
+
18
-
12
+2
3

(2)
24
-
12
×
6
+
24
×2
3

(3)解方程:(x+4)2=5(x+4)
(4)解方程:2x2+3=7x.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算与解方程
(1)(
x+2
x2-2x
-
x-1
x2-4x+4
x-4
x

(2)
x+1
x-1
-
4
x2-1
=1

查看答案和解析>>

同步练习册答案