精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13.点P从点A出发以每秒2个单位长度的速度沿AD→DC向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿BA向A运动.当点P到达终点,运动即结束.设运动时间为t秒.
(1)梯形ABCD的面积是
40
40

(2)若四边形PQBC恰好是直角梯形,求此时t的值.
分析:(1)首先过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,易得四边形ABCD是矩形,Rt△ADE≌Rt△BCF,则可求得AE与BF的长,然后由勾股定理求得DE的长,则可求得梯形ABCD的面积;
(2)由四边形PQBC恰好是直角梯形,四边形PQFC是矩形,则可得方程12-2t=t-3,继而求得答案.
解答:解:(1)过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,
∵AB∥DC,
∴四边形ABCD是矩形,
∴EF=CD=7,DE=CF,
在Rt△ADE和Rt△BCF中,
AD=BC
DE=CF

∴Rt△ADE≌Rt△BCF(HL),
∴AE=BF=
AB-CD
2
=
13-7
2
=3,
∴DE=
AD2-AE2
=4,
∴S梯形ABCD=
1
2
(AB+CD)•DE=
1
2
×(7+13)×4=40;
故答案为:40;

(2)∵四边形PQBC恰好是直角梯形,
∴四边形PQFC是矩形,
∴PC=QF,
∴CP=5+7-2t,QF=t-3,
∴12-2t=t-3,
解得:t=5,
即四边形PQBC恰好是直角梯形,此时t=5.
点评:此题考查了等腰梯形的性质、勾股定理、全等三角形的判定与性质以及矩形的性质与判定.此题难度适中,注意掌握方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案