精英家教网 > 初中数学 > 题目详情

【题目】学完第2章“特殊的三角形”后,老师布置了一道思考题:
如图,点M、N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.

(1)判断△ABM与△BCN是否全等,并说明理由.
(2)判断∠BQM是否会等于60°,并说明理由.
(3)若将题中的点M,N分别移动到BC,CA的延长线上,且BM=CN,是否能得到∠BQM=60°?请说明理由.

【答案】
(1)解:全等,理由:

∵AB=BC,∠ABM=∠BCN=60°,BM=CN,

∴△ABM≌△BCN(SAS);


(2)解:∵△ABM≌△BCN,

∴∠CBN=∠BAM,

∴∠BQM=∠BAM+∠ABQ=∠CBN+∠ABQ=∠ABC=60°;


(3)解:能得到∠BQM=60°.理由如下:

同(1)可证△ABM≌△BCN(SAS),

∴∠M=∠N,

∵∠QAN=∠CAM,∠BQM=∠N+∠QAN,∠ACB=∠M+∠CAM,

∴∠BQM=∠ACB=60°.


【解析】(1)因为AB=BC,∠ABM=∠BCN=60°,BM=CN,利用SAS可以证明;(2)根据两个三角形全等,对应角相等可得∠CBN=∠BAM,则∠BQM=∠BAM+∠ABQ=∠CBN+∠ABQ=∠ABC=60°;(3)和(1)同样的求法可得△ABM≌△BCN,然后利用三角形外角的性质求∠BQM=60°.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果2xa2b﹣3ya+b+1=0是二元一次方程,那么a,b的值分别是(

A. 1,0 B. 0,1 C. ﹣1,2 D. 2,﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据有30个数,把它们分成四组,其中第一组,第二组的频数分别为7,9,第三组的频率为0.1,则第四组的频数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2 ,P是AC上的一个动点.

(1)当点P运动到∠ABC的平分线上时,连接DP、BP,求CP、DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;
(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时平行四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般情况下,学生注意力上课后逐渐增强,中间有段时间处于较理想的稳定状态,随后开始分散.实验结果表明,学生注意力指数y随时间x(min)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):

(1)上课后第5min与第30min相比较,何时学生注意力更集中?

(2)某道难题需连续讲19min,为保证效果,学生注意力指数不宜低于36,老师能否在所需要求下讲完这道题?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知整数 a1 , a2 , a3 , a4 , …满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2017的值为( )
A.﹣1005
B.﹣1006
C.﹣1007
D.﹣1008

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:ax2-9a=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.
(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?
(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程组或不等式组
(1)
(2)解不等式 ≥1,把它的解集在数轴上表示出来.

查看答案和解析>>

同步练习册答案