精英家教网 > 初中数学 > 题目详情

【题目】8分)【问题情境】

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分DAM

【探究展示】(1)证明:AM=AD+MC

【拓展延伸】(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1中的结论是否成立?请作出判断,不需要证明.

【答案】1)见解析;(2)仍然成立.

【解析】整体分析

(1)延长AEBC交于点N,由△ADE≌△NCEAD=NC由角平分线,平行线得MA=MN;(21的方法类似.

1)证明:延长AEBC交于点N,如图1

∵四边形ABCD是正方形,∴ADBC∴∠DAE=ENCAE平分∠DAM∴∠DAE=MAE

∴∠ENC=MAEMA=MN

∴△ADE≌△NCEAAS

AD=NCMA=MN=NC+MC=AD+MC

2①结论AM=AD+MC仍然成立.

证明:延长AEBC交于点P,如图2

∵四边形ABCD是矩形,∴ADBC∴∠DAE=EPC

AE平分∠DAM∴∠DAE=MAE

∴∠EPC=MAEMA=MP

∴△ADE≌△PCEAAS).

AD=PCMA=MP=PC+MC=AD+MC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,ADBCBEDFAEBDCFBD,垂足分别为点EF.

(1)求证:ADE≌△CBF

(2)ACBD相交于点O,求证:AOCO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列解题过程,再解答问题:

-5+7=-5+(-)+7+=[(-5)+7]+[(-)+]=2+=2.

上述方法叫做拆项法,依照上述方法计算:

(1)7+(-7);

(2)(-2018)+(-2017)+4036+(-1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cm,AD=12cm,点PAD边上以每秒1cm的速度从点A向点D运动,点QBC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ有( )次平行于AB?

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是线段AB上一点,M是线段AC的中点,N是线段BC的中点.

(1)如果AB=10cm,AM=3cm,求CN的长;

(2)如果MN=6cm,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=
(1)在图中,求作△ABO的外接圆(尺规作图,不写作法但需保留作图痕迹);
(2)求点B的坐标与cos∠BAO的值;
(3)若A,O位置不变,将点B沿x轴向右平移使得△ABO为等腰三角形,请求出平移后点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.

视力

频数(人)

频率

4.0≤x<4.3

20

0.1

4.3≤x<4.6

40

0.2

4.6≤x<4.9

70

0.35

4.9≤x<5.2

a

0.3

5.2≤x<5.5

10

b

(1)在频数分布表中,a=   ,b=   

(2)将频数分布直方图补充完整;

(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:

候选人

面试

笔试

形体

口才

专业水平

创新能力

86

90

96

92

92

88

95

93

若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5546的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?

查看答案和解析>>

同步练习册答案