【题目】为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数,反比例函数或二次函数中的一种)
x(亩) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)请求出种植樱桃的面积超过15亩时每亩获得利润y与x的函数关系式;
(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.
科目:初中数学 来源: 题型:
【题目】小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你将有关内容补充完整.例题:求一元二次方程的两个解.
(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法)求解.解方程:;
(2)解法二:利用二次函数图象与坐标轴的交点求解,如图1所示,把方程的解看成是二次函数y= 的图象与x轴交点的横坐标,即x1,x2就是方程的解.
(3)解法三:利用两个函数图象的交点求解.
①把方程的解看成是一个二次函数y= 的图象与一个一次函数y= 的图象交点的横坐标;
②画出这两个函数的图象,用x1,x2在x轴上标出方程的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.
(1)求证:CD是⊙O的切线;
(2)若AD⊥CD,AB=10,AD=8,求AC的长;
(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,∠ADB=∠CDB=∠BAC=45°,结论:①∠ABC=90°,②AB=BC,③AD2+DC2=2AB2,④AD+DC=BD,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=x2+mx+m﹣1的顶点为D,交y轴于C点,交x轴于A(x1,0),B(x2,0)两点,点A在y轴左边,点B在y轴右边,且AB=4.
(1)求抛物线的解析式;
(2)如图1,AP⊥AD交抛物线于P.求点P的坐标;
(3)如图2,点H为B,D之间抛物线上一点,直线CH交BD于E,交x轴于F,若S△CDE=S△BEF,求H点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣2,3),点B的坐标为(4,n).
(1)求该反比例函数和一次函数的解析式;
(2)在x轴上是否存在点P,使△APC是直角三角形?若存,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1中, ,点从点出发以的速度沿折线运动,点从点出发以的速度沿运动,两点同时出发,当某一点运动到点时,两点同时停止运动.设运动时间为,的面积为),关于的函数图象由两段组成,如图2所示,有下列结论:①;②:③图象段的函数表达式为;④面积的最大值为8,其中正确的个数有( )个
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第天(为整数)的售价、销量及储存和损耗费用的相关信息如表所示.
时间(天) | ||
售价(元/斤) | 第1次降价后的价格 | 第2次降价后的价格 |
销量(斤) | ||
储存和损耗费用(元) |
已知该种水果的进价为4.1元/斤,设销售该水果第(天)的利润为(元),求与()之间的函数解析式,并求出第几天时销售利润最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元.
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产A、B两种产品总利润为y元,其中一种产品生产件数为x件,试写出y与x之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com