精英家教网 > 初中数学 > 题目详情

【题目】如图①所示,空圆柱形容器内放着一个实心的“柱锥体”(由一个圆柱和一个同底面的圆锥组成的几何体).现向这个容器内匀速注水,水流速度为5cm3/s,注满为止.已知整个注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请你根据图中信息,解答下列问题:

(1)圆柱形容器的高为cm,“柱锥体”中圆锥体的高为cm;
(2)分别求出圆柱形容器的底面积与“柱锥体”的底面积.

【答案】
(1)12;3
(2)

解:设圆柱形容器的底面积为S,

则S(12﹣8)=(42﹣26)×5,

解得,S=20,

设“柱锥体”的底面积为S柱锥

S柱锥×5=20×5﹣15×5,

解得,S柱锥=5,

即圆柱形容器的底面积是20cm2,“柱锥体”的底面积是5cm2


【解析】解:(1)由题意和函数图象可得,
圆柱容器的高为12cm,“柱锥体”中圆锥体的高为:8﹣5=3cm,
所以答案是:12,3;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面是马小哈同学做的一道题

解方程

:①去分母 4(2x﹣1)=1﹣3(x+2)

去括号 8x﹣4=1﹣3x﹣6

移项8x+3x=1﹣6+4

合并同类项 11x=﹣1

系数化为1,

(1)上面的解题过程中最早出现错误的步骤是(填代号)

(2)请在本题右边正确的解方程

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.

(1)当PC∥QB时,OQ=
(2)当PC⊥QB时,求OQ的长.
(3)当折叠后重叠部分为等腰三角形时,求OQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.

(1)求一次函数y=kx+b的关系式;

(2)结合图象,直接写出满足kx+b>的x的取值范围;

(3)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC. ①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点A是半圆上一个三等分点,点B是 的中点,点P是直径 MN上一动点,若⊙O的直径为2,则AP+BP的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于的一次函数的图象可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.

(1)求A种,B种树木每棵各多少元?

(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.

查看答案和解析>>

同步练习册答案