【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.
(1)求抛物线的函数表达式;
(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点 P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;
(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.
【答案】(1)y=;(2)点P、Q的坐标分别为:(,)、(,﹣);(3)存在,点K(1,).
【解析】
(1)根据对称轴x=1,求出点B的坐标,再将点B代入抛物线表达式中求出a的值,即可求抛物线的函数表达式;
(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,联立抛物线与直线PQ的表达式可得方程,求解方程即可得出点P,Q的坐标;
(3)设点K(1,m),联立PQ和AC的表达式,即可求出G点的坐标,过点G作x轴的平行线交函数对称轴于点M,交过点R与y轴的平行线于点N,通过△KMG≌△GNR可得R(m﹣1,),将R点代入抛物线解析式即可求出m的值,求得K的坐标.
(1)对称轴x=1,则点B(﹣2,0),
则抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),
即﹣8a=2,
解得:a=,
故抛物线的表达式为:y=;
(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,
△CPQ的面积=×CE×(n﹣m)=,即n﹣m=2,
联立抛物线与直线PQ的表达式并整理得:…①,
m+n=2﹣4k,mn=﹣4,
n﹣m=2==,
解得:k=0(舍去)或1;
将k=1代入①式并解得:x=,
故点P、Q的坐标分别为:(,)、(,﹣)
(3)设点K(1,m),
联立PQ和AC的表达式并解得:x=,故点G(,)
过点G作x轴的平行线交函数对称轴于点M,交过点R与y轴的平行线于点N,
则△KMG≌△GNR(AAS),
GM=1-==NR,MK=,
故点R的纵坐标为:,则点R(m﹣1,)
将该坐标代入抛物线表达式解得:x=,
故m=,
故点K(1,).
科目:初中数学 来源: 题型:
【题目】甲、乙两车都从A地驶向B地,并以各自的速度匀速行驶甲车比乙车早行驶,甲车途中休息了设甲车行驶时间为,下图是甲乙两车行驶的距离与的函数图象,根据题中信息回答问题:
填空:______,______;
当乙车出发后,求乙车行驶路程与的函数解析式,并写出相应的x的取值范围;
当甲车行驶多长时间时,两车恰好相距50km?请直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与轴交于两点,与轴交于点,,矩形的边,延长交抛物线于点.
(1)求抛物线的表达式;
(2)如图2,点是直线上方抛物线上的一个动点,过点作轴的平行线交直线于点,作,垂足为.设的长为,点的横坐标为,求与的函数关系是(不必写出的取值范围),并求出的最大值;
(3)如果点是抛物线对称轴上的一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点D坐标为(2,﹣1),且过点B(3,0),与y轴交于点C.
(1)求抛物线的解析式及点C的坐标;
(2)连结OD、CD、CB,CD交x轴于点E,求S△CEB:S△ODE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
学校这次调查共抽取了 名学生;
求的值并补全条形统计图;
在扇形统计图中,“围棋”所在扇形的圆心角度数为 ;
设该校共有学生名,请你估计该校有多少名学生喜欢足球.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字.
(1)从中随机摸出一个球,求这个球上数字是奇数的概率是 ;
(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍画出图形。
(2)写出B、C两点的对应点B、C的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com