【题目】如图,已知二次函数y=-x2+bx+c与x轴交于A(-2,0),B两点,对称轴经过点(1,0).
(1)求b,c的值;
(2)点P是二次函数图象上位于第一象限的一点,过点P作PC⊥x轴,垂足为C,若S△PAC∶S△PBC=5∶1,求点P的坐标.
【答案】(1)b=2,c=8;(2)点P的坐标为(3,5)
【解析】
(1)由二次函数的图象和性质可知,点A、B是二次函数与轴的交点,所以A、B关于对称轴对称,对称轴经过,可知,对称轴为,即可求出点B坐标,把已知点坐标代入二次函数表达式,即可求得b,c的值;
(2)由三角形的面积关系式,两个三角形同高可知,面积比等于底的比,根据AB长度,可求出P点横坐标,代入二次函数表达式,即可求出答案.
解:(1)抛物线的对称轴经过点,
抛物线的对称轴为直线.
点和点在轴上,关于直线对称,
,
抛物线的解析式为,
即,
,
故答案为:,
(2) ,
.
由已知点为二次函数图象上位于第一象限的一点,
点的横坐标为3.
当时,,
点的坐标为,
故答案为:.
科目:初中数学 来源: 题型:
【题目】为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地大约要走多少千米?
(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )
A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中两个黑球,一个白球,从中随机取出两个球
B.小明,小王两个人在一个路口,分别从直行,左转,右转三个方向中随机选一个方向
C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答
D.体育测试中,随机从足球运球,篮球运球,排球垫球三个项目中选择两个项目
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为某商场的一个可以自由转动的转盘,规定:顾客购物满100元即可获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品.下表是活动进行中的一组统计数据:
转动转盘的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“钦料”的次数m | 71 | 110 | 155 | 379 | 603 | 752 |
根据以上信息,解决下列问题:
(1)请估计转动该转盘一次,获得饮料的概率约是 (精确到0.01);
(2)现有若干个除颜色外相同的白球和黑球,根据(1)结论,在保证获得饮料与纸巾概率不变的情况下,请你设计一个可行的摸球抽奖规则,详细说明步骤;
(3)若小郑和小刘都购买超过100元的商品,均获得一次转动转盘的机会,请根据(2)中设计的规则,利用列表法或画树状图法求两人都获得“饮料”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.
(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?
(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据天气预报报道,福建省部分城市某日的最高气温如下表所示:
城市 | 福州 | 厦门 | 宁德 | 莆田 | 泉州 | 漳州 | 龙岩 | 三明 | 南平 |
最高气温(℃) | 11 | 16 | 11 | 13 | 13 | 17 | 16 | 11 | 9 |
则下列说法正确的是( )
A.龙岩的该日最高气温最高B.这组数据的众数是16
C.这组数据的中位数是11D.这组数据的平均数是13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y与x之间的函数关系式;
(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com