【题目】定义为一次函数y=px+q的特征数.
(1)若特征数是的一次函数为正比例函数,求m的值;
(2)已知抛物线y=(x+n)(x-2)与x轴交于点A、B,其中n>0,点A在点B的左侧,与y轴交于点C,且△OAC的面积为4,O为原点,求图象过A、C两点的一次函数的特征数.
【答案】(1)m=-1;(2)
【解析】
(1)根据正比例函数的一般形式y=kx(k≠0),则m+1=0,进而求出即可;
(2)根据题意得出n的值,进而得出直线AC的解析式,进而得出图象过A、C两点的一次函数的特征数.
解:(1)∵特征数是[2,m+1]的一次函数为正比例函数,
∴m+1=0,
解得:m=-1;
(2)由题意得点A的坐标为(-n,0),点C的坐标为(0,-2n).
∵△OAC的面积为4,
∴,
∴n=2,
∴ 点A的坐标为(-2,0),点C的坐标为(0,-4).
设直线AC的解析式为 y=kx+b.
∴,
∴,
∴ 直线AC的解析式为:y=-2x-4;
∴ 图象过A、C两点的一次函数的特征数为.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD⊥BC,垂足为D,AD=BD=3,CD=2,点P从点B出发沿线段BC的方向移动到点C停止,过点P作PQ⊥BC,交折线BA﹣AC于点Q,连接DQ、CQ,若△ADQ与△CDQ的面积相等,则线段BP的长度是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.
(1)求单摆的长度;
(2)求从点A摆动到点B经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC=10,BC=16,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时(如图2),求AE的长;
(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣x+m=0有两个实数根.
(1)若m为正整数,求此方程的根.
(2)设此方程的两个实数根为a、b,若y=a(a﹣1)﹣2b2+2b+1,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.
(1)求反比例函数的解析式及点E的坐标;
(2)连接BC,求S△CEB.
(3)若在x轴上的有两点M(m,0)N(-m,0).
①以E、M、C、N为顶点的四边形能否为矩形?如果能求出m的值,如果不能说明理由.
②若将直线OA绕O点旋转,仍与y=交于C、E,能否构成以E、M、C、N为顶点的四边形为菱形,如果能求出m的值,如果不能说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间 每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程
(1)求证:方程总有两个不相等的实数根。
(2)m为何整数时,此方程的两个根都是正整数?
(3)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求m的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com