精英家教网 > 初中数学 > 题目详情
已知抛物线经过点,那么抛物线的解析式是_____________________。
代入
试题分析:由题意把代入抛物线即可求得结果.
由题意得,解得
则抛物线的解析式是.
点评:本题属于基础应用题,只需学生熟练掌握待定系数法求函数关系式,即可完成.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,半径为2的⊙C与轴的正半轴交于点A,与轴的正半轴交于点B,点C的坐标为(1,0),若抛物线过A、B两点。

(1)求抛物线的解析式;
(2)在抛物线上是否存在P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该二次函数的关系式;
(2)写出该二次函数的对称轴和顶点坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.

(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,AC=BC=8,∠ACB=90º,直角边AC在x轴上,B点在第二象限,A(2,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形B1C1F1E1与△AEF重叠的面积为S.

(1)求折痕EF的长;
(2)直接写出S与t的函数关系式及自变量t的取 值范围.
(3)若四边形BCFE平移时,另有一动点H与四边形BCFE同时出发,以每秒个单位长度从点A沿射线AC运动,试求出当t为何值时,△HE1E为等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形中,.动点从点出发,以每秒个单位长度的速度在线段上运动;动点同时从点出发,以每秒个单位长度的速度在线段上运动.以为边作等边△,与梯形在线段的同侧.设点运动时间为,当点到达点时,运动结束.

(1)当等边△的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设等边△与梯形的重合部分面积为,请直接写
之间的函数关系式和相应的自变量的取值范围;
(3)如图,当点到达点时,将等边△绕点旋转(),
直线分别与直线、直线交于点.是否存在这样的,使△为等腰三角形?
若存在,请求出此时线段的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球距地面高度h(米)与其飞行的水平距离s(米)之间的关系式为.若球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为2.25米,

(1)羽毛球的出手点高度为__________米;
(2)设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接失败,则m取值范围是__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的最大值是          

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线y=ax2+bx+c交x轴于(,0)、(3,0)两点,则下列判断中,错误的是
A.图象的对称轴是直线x=1
B.当x>1时,y随x的增大而减小
C.一元二次方程ax2+bx+c=0的两个根是-1和3
D.当-1<x<3时,y<0

查看答案和解析>>

同步练习册答案