精英家教网 > 初中数学 > 题目详情
11、如图,BD与CE分别是∠ABC和∠ACB的平分线,如果∠DBC=∠ECB,那么∠ABC=∠ACB吗?
相等
分析:要判断∠ABC与∠ACB是否相等,根据BD与CE分别是∠ABC和∠ACB的平分线,只要∠DBC=∠ECB,而这正是已知所提供的,于是答案可得.
解答:解:∵BD与CE分别是∠ABC和∠ACB的平分线,
∴∠ABC=2∠DBC,∠ACB=2∠ECB,
又∠DBC=∠ECB,
∴∠ABC=∠ACB.
故答案为相等.
点评:本题考查了三角形的角平分线、中线和高的相关知识;认真读题,熟练掌握角平分线的定义是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、(1)如图1,△ABC和△ADE均为顶角为α的等腰三角形,连接BD、CE,BD与CE、AC分别交于点O、点P.通过观察或测量,猜想:
①线段BD和CE的数量关系为
相等

②BD和CE之间的夹角∠BOC=
α

(2)现将图1中的△ADE绕着点A顺时针旋转一个角度,得到图2,BD的延长线与CE的延长线交于点O,与AC交于点P,问(1)中猜想的结论还成立吗?若成立,予以证明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

84、如图,已知AB=AC,E、D分别在AB、AC上,BD与CE交于点F,且∠ABD=∠ACE,求证:BF=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•浙江)如图,⊙O1与⊙O2相交,大圆⊙O1的弦AB⊥O1O2,垂足是F,且交⊙O2于点C,D,过B作⊙O2的切线,E为切点,已知BE=DE,BD=m,BE=n,AC,CE的长是关于x的方程x2+px+q=0的两个根.
(1)求证:AC=BD;
(2)用含m,n的代数式分别表示p和q;
(3)如果关于x的方程qx2-(m2+mp)x+1=0有两个相等的实数根,且∠DEB=30°,求⊙O2的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C是线段AB上任意一点(C点不与A、B重合),分别以AC、BC为边在直线AB的同侧作等边△ACD和等边△BCE,AE与CD相交于点M,BD与CE相交于点N.求证:
(1)△ACE≌△DCB;
(2)MN∥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D、E分别在AB、AC上,AD=AE,∠B=∠C,CD与BE交于点O. 
(1)试证BD=CE;
(2)连接BC,画直线AO,则直线AO与BC有何关系?证明你的猜测.

查看答案和解析>>

同步练习册答案