精英家教网 > 初中数学 > 题目详情
已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.
(1)求证:DE⊥BC;
(2)如果CD=4,CE=3,求⊙O的半径.

【答案】分析:本题由已知DE是⊙O的切线,可联想到常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法.
解答:(1)证明:连接OD,(1分)
∵DE切⊙O于点D,
∴DE⊥OD,
∴∠ODE=90°,(2分)
又∵AD=DC,AO=OB,
∴OD∥BC,(3分)
∴∠DEC=∠ODE=90°,
∴DE⊥BC;(4分)

(2)解:连接BD,(5分)
∵AB是⊙O的直径,
∴∠ADB=90°,(6分)
∴BD⊥AC,
∴∠BDC=90°,
又∵DE⊥BC,
Rt△CDB∽Rt△CED,(7分)

∴BC=,(9分)
又∵OD=BC,
∴OD=
即⊙O的半径为.(10分)
点评:命题立意:此题主要考查圆的切线的性质、垂直的判定、圆周角的性质、三角形相似等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案