精英家教网 > 初中数学 > 题目详情
10.连结矩形四边中点所得四边形是菱形.

分析 因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.

解答 解:连接AC、BD,

在△ABD中,
∵AH=HD,AE=EB
∴EH=$\frac{1}{2}$BD,
同理FG=$\frac{1}{2}$BD,HG=$\frac{1}{2}$AC,EF=$\frac{1}{2}$AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四边形EFGH为菱形,
故答案为:菱形.

点评 本题考查了菱形的判定和三角形中位线定理,能熟记菱形的判定方法是解此题的关键,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.已知一次函数y=x-2的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在△ABC中,DE∥BC,若$\frac{AD}{DB}$=$\frac{2}{3}$,则$\frac{DE}{BC}$=(  )
A.$\frac{2}{3}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修一个货站P,使得货站P到两公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货运站P的位置.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.
(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;
答:我选择③.(填序号)
(2)在(1)选择的条件下,△ABC再满足条件:∠BAD=90°,四边形AEDF即成为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知一个三次多项式除以x2-9的余式为3x-5,除以x2-16余式-2x-7,求这个三次多项式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB于点E,以点O为圆心,OC的长为半径作弧CD交OB于点D,若OA=2,则阴影部分的面积为(  )
A.$\frac{4π-3\sqrt{3}}{4}$B.$\frac{π-\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$+$\frac{π}{12}$D.$\frac{π-3\sqrt{3}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.画出下面几何体的从正面、从左面、从上面看到的形状图.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,以点A(1,$\sqrt{3}$)为圆心的⊙A交y轴正半轴于B、C两点,且OC=$\sqrt{3}$+1,点D是⊙A上第一象限内的一点,连接OD、CD.若OD与⊙A相切,则CD的长为(  )
A.$\sqrt{3}$-1B.$\sqrt{3}$+1C.2$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案