精英家教网 > 初中数学 > 题目详情
(2012•株洲)如图,一次函数y=-
12
x+2
分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
分析:(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式;
(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;
(3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.
解答:解:(1)∵y=-
1
2
x+2
分别交y轴、x轴于A、B两点,
∴A、B点的坐标为:A(0,2),B(4,0)…(1分)
将x=0,y=2代入y=-x2+bx+c得c=2…(2分)
将x=4,y=0代入y=-x2+bx+c得0=-16+4b+2,解得b=
7
2

∴抛物线解析式为:y=-x2+
7
2
x+2…(3分)

(2)如答图1,设MN交x轴于点E,
则E(t,0),BE=4-t.
∵tan∠ABO=
OA
OB
=
2
4
=
1
2

∴ME=BE•tan∠ABO=(4-t)×
1
2
=2-
1
2
t.
又N点在抛物线上,且xN=t,∴yN=-t2+
7
2
t+2,
∴MN=yN-ME=-t2+
7
2
t+2-(2-
1
2
t)=-t2+4t…(5分)
∴当t=2时,MN有最大值4…(6分)

(3)由(2)可知,A(0,2),M(2,1),N(2,5).
以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.…(7分)
(i)当D在y轴上时,设D的坐标为(0,a)
由AD=MN,得|a-2|=4,解得a1=6,a2=-2,
从而D为(0,6)或D(0,-2)…(8分)
(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,
易得D1N的方程为y=-
1
2
x+6,D2M的方程为y=
3
2
x-2,
由两方程联立解得D为(4,4)…(9分)
故所求的D点坐标为(0,6),(0,-2)或(4,4)…(10分)
点评:本题是二次函数综合题,考查了抛物线上点的坐标特征、二次函数的极值、待定系数法求函数解析式、平行四边形等重要知识点.难点在于第(3)问,点D的可能位置有三种情形,解题时容易遗漏而导致失分.作为中考压轴题,本题有一定的难度,解题时比较容易下手,区分度稍低.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知直线a∥b,直线c与a、b分别交于A、B;且∠1=120°,则∠2=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,直线x=t(t>0)与反比例函数y=
2
x
,y=
-1
x
的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知AD为⊙O的直径,B为AD延长线上一点,BC与⊙O切于C点,∠A=30°.
求证:(1)BD=CD;
(2)△AOC≌△CDB.

查看答案和解析>>

同步练习册答案